Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
J Appl Clin Med Phys ; 22(8): 219-229, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216091

ABSTRACT

BACKGROUND: To conserve personal protective equipment (PPE) and reduce exposure to potentially infected COVID-19 patients, several Californian facilities independently implemented a method of acquiring portable chest radiographs through glass barriers that was originally developed by the University of Washington. METHODS: This work quantifies the transmission of radiation through a glass barrier using six radiographic systems at five facilities. Patient entrance air kerma (EAK) and effective dose were estimated both with and without the glass barrier. Beam penetrability and resulting exposure index (EI) and deviation index (DI) were measured and used to adjust the tube current-time product (mAs) for glass barriers. Because of beam hardening, the contrast-to-noise ratio (CNR) was measured with image quality phantoms to ensure diagnostic integrity. Finally, scatter surveys were performed to assess staff radiation exposure both inside and outside the exam room. RESULTS: The glass barriers attenuated a mean of 61% of the normal X-ray beams. When the mAs was increased to match EI values, there was no discernible degradation of image quality as determined by the CNR. This was corroborated with subjective assessments of image quality by chest radiologists. The glass-hardened beams acted as a filter for low energy X-rays, and some facilities observed slight changes in patient effective doses. There was scattering from both the phantoms and the glass barriers within the room. CONCLUSIONS: Glass barriers require an approximate 2.5 times increase in beam intensity, with all other technique factors held constant. Further refinements are necessary for increased source-to-image distance and beam quality in order to adequately match EI values. This does not result in a significant increase in the radiation dose delivered to the patient. The use of lead aprons, mobile shields, and increased distance from scattering sources should be employed where practicable in order to keep staff radiation doses as low as reasonably achievable.


Subject(s)
COVID-19 , Consensus , Humans , Phantoms, Imaging , Radiation Dosage , Radiography, Thoracic , SARS-CoV-2
4.
J Am Coll Radiol ; 16(8): 1119-1120, 2019 08.
Article in English | MEDLINE | ID: mdl-30975609
6.
Pediatr Radiol ; 48(1): 5-20, 2018 01.
Article in English | MEDLINE | ID: mdl-29292481

ABSTRACT

Children with congenital or acquired heart disease can be exposed to relatively high lifetime cumulative doses of ionizing radiation from necessary medical imaging procedures including radiography, fluoroscopic procedures including diagnostic and interventional cardiac catheterizations, electrophysiology examinations, cardiac computed tomography (CT) studies, and nuclear cardiology examinations. Despite the clinical necessity of these imaging studies, the related ionizing radiation exposure could pose an increased lifetime attributable cancer risk. The Image Gently "Have-A-Heart" campaign is promoting the appropriate use of medical imaging studies in children with congenital or acquired heart disease while minimizing radiation exposure. The focus of this manuscript is to provide a comprehensive review of radiation dose management and CT performance in children with congenital or acquired heart disease.


Subject(s)
Heart Defects, Congenital/diagnostic imaging , Radiation Dosage , Radiation Protection/methods , Tomography, X-Ray Computed , Child , Humans , Risk Factors
7.
J Am Coll Radiol ; 15(2): 313-318, 2018 02.
Article in English | MEDLINE | ID: mdl-29128502

ABSTRACT

PURPOSE: To evaluate defect detection in radiation protective apparel, typically called lead aprons, using infrared (IR) thermal imaging. The use of IR lighting eliminates the need for access to x-ray-emitting equipment and radiation dose to the inspector. MATERIALS AND METHODS: The performance of radiation workers was prospectively assessed using both a tactile inspection and the IR inspection with a lead apron phantom over a 2-month period. The phantom was a modified lead apron with a series of nine holes of increasing diameter ranging from 2 to 35 mm in accordance with typical rejection criteria. Using the tactile method, a radiation worker would feel for the defects in the lead apron. For the IR inspection, a 250-W IR light source was used to illuminate the lead apron phantom; an IR camera detected the transmitted radiation. The radiation workers evaluated two stills from the IR camera. RESULTS: From the 31 participants inspecting the lead apron phantom with the tactile method, only 2 participants (6%) correctly discovered all 9 holes and 1 participant reported a defect that was not there; 10 of the 20 participants (50%) correctly identified all 9 holes using the IR method. Using a weighted average, 5.4 defects were detected with the tactile method and 7.5 defects were detected with the IR method. CONCLUSION: IR light can penetrate an apron's protective outer fabric and illuminate defects below the current standard rejection size criteria. The IR method improves defect detectability as compared with the tactile method.


Subject(s)
Equipment Failure Analysis/methods , Occupational Exposure/prevention & control , Protective Clothing/standards , Radiation Protection/instrumentation , Humans , Infrared Rays , Lead , Phantoms, Imaging , Prospective Studies
8.
J Am Coll Radiol ; 11(3): 285-91, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24589404

ABSTRACT

PURPOSE: An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. METHODS: Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. RESULTS: When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. CONCLUSIONS: Protocol translation on the basis of quantitative metrics (volumetric CT dose index or measured image noise) is feasible. Protocol translation has a dependency on patient size, especially between the GE and Siemens systems. Translation schemes that preserve dose levels may not produce identical image quality.


Subject(s)
Algorithms , Radiation Protection/instrumentation , Radiation Protection/standards , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/standards , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/standards , Calibration , Equipment Design , Equipment Failure Analysis/standards , Guidelines as Topic , Radiation Dosage , United States
9.
Phys Med Biol ; 59(2): 363-77, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24351935

ABSTRACT

Half-value layer (HVL) measurements on commercial whole body computer tomography (CT) scanners require serial measurements and, in many institutions, the presence of a service engineer. An assembly of aluminum filters (AAF), designed to be used in conjunction with a real-time dosimeter, was developed to provide estimates of the HVL using clinical protocols. Two real-time dose probes, a solid-state and air ionization chamber, were examined. The AAF consisted of eight rectangular filters of high-purity aluminum (Type 1100), symmetrically positioned to form a cylindrical 'cage' around the probe's detective volume. The incident x-ray beam was attenuated by varying thicknesses of aluminum filters as the gantry completed a minimum of one rotation. Measurements employing real-time chambers were conducted both in service mode and with a routine abdomen/pelvis protocol for several combinations of x-ray tube potentials and bow tie filters. These measurements were validated against conventional serial HVL measurements. The average relative difference between the HVL measurements using the two methods was less than 5% when using a 122 mm diameter AAF; relative differences were reduced to 1.1% when the diameter was increased to 505 mm, possibly due to reduced scatter contamination. Use of a real-time dose probe and the AAF allowed for time-efficient measurements of beam quality on a clinical CT scanner using clinical protocols.


Subject(s)
Tomography, X-Ray Computed/methods , Feasibility Studies , Humans , Radiometry , Time Factors
10.
Phys Med Biol ; 57(13): 4293-307, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22705748

ABSTRACT

The purpose of this paper is to develop a technique for the construction of a two-compartment anthropomorphic breast phantom specific to an individual patient's pendant breast anatomy. Three-dimensional breast images were acquired on a prototype dedicated breast computed tomography (bCT) scanner as part of an ongoing IRB-approved clinical trial of bCT. The images from the breast of a patient were segmented into adipose and glandular tissue regions and divided into 1.59 mm thick breast sections to correspond to the thickness of polyethylene stock. A computer-controlled water-jet cutting machine was used to cut the outer breast edge and the internal regions corresponding to glandular tissue from the polyethylene. The stack of polyethylene breast segments was encased in a thermoplastic 'skin' and filled with water. Water-filled spaces modeled glandular tissue structures and the surrounding polyethylene modeled the adipose tissue compartment. Utility of the phantom was demonstrated by inserting 200 µm microcalcifications as well as by measuring point dose deposition during bCT scanning. Affine registration of the original patient images with bCT images of the phantom showed similar tissue distribution. Linear profiles through the registered images demonstrated a mean coefficient of determination (r(2)) between grayscale profiles of 0.881. The exponent of the power law describing the anatomical noise power spectrum was identical in the coronal images of the patient's breast and the phantom. Microcalcifications were visualized in the phantom at bCT scanning. The real-time air kerma rate was measured during bCT scanning and fluctuated with breast anatomy. On average, point dose deposition was 7.1% greater than the mean glandular dose. A technique to generate a two-compartment anthropomorphic breast phantom from bCT images has been demonstrated. The phantom is the first, to our knowledge, to accurately model the uncompressed pendant breast and the glandular tissue distribution for a specific patient. The modular design of the phantom allows for studies of a single breast segment and the entire breast volume. Insertion of other devices, materials and tissues of interest into the phantom provide a robust platform for future breast imaging and dosimetry studies.


Subject(s)
Breast/anatomy & histology , Phantoms, Imaging , Precision Medicine/instrumentation , Female , Humans , Mammography , Middle Aged
11.
Int J Radiat Oncol Biol Phys ; 84(2): 533-9, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22436786

ABSTRACT

PURPOSE: To demonstrate the feasibility of a dedicated breast computed tomography (bCT) platform to deliver rotational kilovoltage (kV) external beam radiotherapy (RT) for partial breast irradiation, whole breast irradiation, and dose painting. METHODS AND MATERIALS: Rotational kV-external beam RT using the geometry of a prototype bCT platform was evaluated using a Monte Carlo simulator. A point source emitting 178 keV photons (approximating a 320-kVp spectrum with 4-mm copper filtration) was rotated around a 14-cm voxelized polyethylene disk (0.1 cm tall) or cylinder (9 cm tall) to simulate primary and primary plus scattered photon interactions, respectively. Simulations were also performed using voxelized bCT patient images. Beam collimation was varied in the x-y plane (1-14 cm) and in the z-direction (0.1-10 cm). Dose painting for multiple foci, line, and ring distributions was demonstrated using multiple rotations with varying beam collimation. Simulations using the scanner's native hardware (120 kVp filtered by 0.2-mm copper) were validated experimentally. RESULTS: As the x-y collimator was narrowed, the two-dimensional dose profiles shifted from a cupped profile with a high edge dose to an increasingly peaked central dose distribution with a sharp dose falloff. Using a 1-cm beam, the cylinder edge dose was <7% of the dose deposition at the cylinder center. Simulations using 120-kVp X-rays showed distributions similar to the experimental measurements. A homogeneous dose distribution (<2.5% dose fluctuation) with a 20% decrease in dose deposition at the cylinder edge (i.e., skin sparing) was demonstrated by weighted summation of four dose profiles using different collimation widths. Simulations using patient bCT images demonstrated the potential for treatment planning and image-guided RT. CONCLUSIONS: Rotational kV-external beam RT for partial breast irradiation, dose painting, and whole breast irradiation with skin sparing is feasible on a bCT platform with the potential for high-resolution image-guided RT.


Subject(s)
Breast Neoplasms/radiotherapy , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Rotation , Tomography, X-Ray Computed/methods , Breast Neoplasms/diagnostic imaging , Feasibility Studies , Female , Humans , Phantoms, Imaging , Photons/therapeutic use , Scattering, Radiation
12.
Med Phys ; 38(4): 2180-91, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21626952

ABSTRACT

PURPOSE: Accurate anatomical characterization of the breast is useful in breast phantom development and computer modeling of breast imaging technologies. Capitalizing on the three-dimensional capabilities of dedicated breast CT (bCT), a number of parameters which describe breast shape and fibroglandular distribution are defined. METHODS: Among 219 bCT data sets, the effective diameter and length of the pendant breast as well as the breast volume were measured and characterized for each bra cup size. The volume glandular fraction (VGF) was determined as a function of patient age, BIRADS density, bra cup size, and breast diameter. The glandular fraction was examined in coronal and sagittal planes of the breast, and the radial distribution of breast glandular fraction within a coronal bCT image was examined for three breast regions. The areal glandular fraction (AGF) was estimated from two-dimensional projections of the breast (simulated by projecting bCT data sets) and was compared to the corresponding VGF. RESULTS: The effective breast diameter and length increase with increasing bra cup size. The mean breast diameters (+/- standard error) of bra cup sizes A/AA, B, C, and D/DD were 11.1 +/- 0.5, 11.4 +/- 0.3, 13.0 +/- 0.2, and 13.7 +/- 0.2 cm, respectively. VGF was lower among older women and those with larger breast diameter and larger bra cup size. VGF increased as a function of the reported BIRADS density. AGF increased with VGF. Fibroglandular tissue was distributed primarily in the central portion of the breast. CONCLUSIONS: Breast metrics were examined and a number of parameters were defined which may be useful for breast modeling. The reported data may provide researchers with useful information for characterizing the breast for various imaging or dosimetry tasks.


Subject(s)
Breast/anatomy & histology , Mammography/methods , Female , Humans , Imaging, Three-Dimensional , Organ Size
13.
Med Phys ; 38(3): 1406-15, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21520852

ABSTRACT

PURPOSE: Beam-shaping or "bow tie" (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. METHODS: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. RESULTS: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method. The BT filter thickness estimates resulting from the dual energy scans on the breast CT system were equivalent to the manufacturing specifications. The clinical CT evaluation produced data conceptually similar to previous computer simulations and plausible relative attenuation profiles were observed. CONCLUSIONS: The COBRA method is a fast and accurate method for BT filter characterization, which requires a simple experimental setup in a clinical environment. Because of the ease of data acquisition, multienergy scans can be acquired which allow characterization of the BT filter thickness.


Subject(s)
Radiation Dosage , Tomography, X-Ray Computed/instrumentation , Humans , Linear Models , Rotation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...