Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38829751

ABSTRACT

In Non-Destructive Evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning methodology using 3-Dimensional (3D) U-Net to localize and size defects in Carbon Fibre Reinforced Polymer (CFRP) composites through volumetric segmentation of ultrasonic testing data. Using a previously developed approach, synthetic training data closely representative of experimental data was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with Mean Absolute Errors (MAE) of 0.57 mm and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2D images) this approach reduces pre-processing (such as signal gating) and allows for the generation of 3D defect masks which can be used for the generation of computer aided design files; greatly reducing the qualification reporting burden of NDE operators.

2.
Ultrasonics ; 140: 107313, 2024 May.
Article in English | MEDLINE | ID: mdl-38603904

ABSTRACT

The use of Carbon Fibre Reinforced Plastic (CFRP) composite materials for critical components has significantly surged within the energy and aerospace industry. With this rapid increase in deployment, reliable post-manufacturing Non-Destructive Evaluation (NDE) is critical for verifying the mechanical integrity of manufactured components. To this end, an automated Ultrasonic Testing (UT) NDE process delivered by an industrial manipulator was developed, greatly increasing the measurement speed, repeatability, and locational precision, while increasing the throughput of data generated by the selected NDE modality. Data interpretation of UT signals presents a current bottleneck, as it is still predominantly performed manually in industrial settings. To reduce the interpretation time and minimise human error, this paper presents a two-stage automated NDE evaluation pipeline consisting of a) an intelligent gating process and b) an autoencoder (AE) defect detector. Both stages are based on an unsupervised method, leveraging density-based spatial clustering of applications with noise clustering method for robust automated gating and undefective UT data for the training of the AE architecture. The AE network trained on ultrasonic B-scan data was tested for performance on a set of reference CFRP samples with embedded and manufactured defects. The developed model is rapid during inference, processing over 2000 ultrasonic B-scans in 1.26 s with the area under the receiver operating characteristic curve of 0.922 in simple and 0.879 in complex geometry samples. The benefits and shortcomings of the presented methods are discussed, and uncertainties associated with the reported results are evaluated.

3.
Article in English | MEDLINE | ID: mdl-38215332

ABSTRACT

This study presents a deep-learning (DL) methodology using 3-D convolutional neural networks (CNNs) to detect defects in carbon fiber-reinforced polymer (CFRP) composites through volumetric ultrasonic testing (UT) data. Acquiring large amounts of ultrasonic training data experimentally is expensive and time-consuming. To address this issue, a synthetic data generation method was extended to incorporate volumetric data. By preserving the complete volumetric data, complex preprocessing is reduced, and the model can utilize spatial and temporal information that is lost during imaging. This enables the model to utilize important features that might be overlooked otherwise. The performance of three architectures was compared. The first architecture is prevalent in the literature for the classification of volumetric datasets. The second demonstrated a hand-designed approach to architecture design, with modifications to the first architecture to address the challenges of this specific task. A key modification was the use of cuboidal kernels to account for the large aspect ratios seen in ultrasonic data. The third architecture was discovered through neural architecture search (NAS) from a modified 3-D residual neural network (ResNet) search space. In addition, domain-specific augmentation methods were incorporated during training, resulting in significant improvements in model performance, with a mean accuracy improvement of 22.4% on the discovered architecture. The discovered architecture demonstrated the best performance with a mean accuracy increase of 7.9% over the second-best model. It was able to consistently detect all defects while maintaining a model size smaller than most 2-D ResNets. Each model had an inference time of less than 0.5 s, making them efficient for the interpretation of large amounts of data.

4.
Sensors (Basel) ; 22(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015795

ABSTRACT

Inspection of components with surface discontinuities is an area that volumetric Non-Destructive Testing (NDT) methods, such as ultrasonic and radiographic, struggle in detection and characterisation. This coupled with the industrial desire to detect surface-breaking defects of components at the point of manufacture and/or maintenance, to increase design lifetime and further embed sustainability in their business models, is driving the increased adoption of Eddy Current Testing (ECT). Moreover, as businesses move toward Industry 4.0, demand for robotic delivery of NDT has grown. In this work, the authors present the novel implementation and use of a flexible robotic cell to deliver an eddy current array to inspect stress corrosion cracking on a nuclear canister made from 1.4404 stainless steel. Three 180-degree scans at different heights on one side of the canister were performed, and the acquired impedance data were vertically stitched together to show the full extent of the cracking. Axial and transversal datasets, corresponding to the transmit/receive coil configurations of the array elements, were simultaneously acquired at transmission frequencies 250, 300, 400, and 450 kHz and allowed for the generation of several impedance C-scan images. The variation in the lift-off of the eddy current array was innovatively minimised through the use of a force-torque sensor, a padded flexible ECT array and a PI control system. Through the use of bespoke software, the impedance data were logged in real-time (≤7 ms), displayed to the user, saved to a binary file, and flexibly post-processed via phase-rotation and mixing of the impedance data of different frequency and coil configuration channels. Phase rotation alone demonstrated an average increase in Signal to Noise Ratio (SNR) of 4.53 decibels across all datasets acquired, while a selective sum and average mixing technique was shown to increase the SNR by an average of 1.19 decibels. The results show how robotic delivery of eddy current arrays, and innovative post-processing, can allow for repeatable and flexible surface inspection, suitable for the challenges faced in many quality-focused industries.


Subject(s)
Software , Ultrasonics , Electric Impedance , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...