Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Heliyon ; 10(6): e27891, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515683

ABSTRACT

Sesame meal is a by-product obtained from oil extraction. We investigated the characteristics and antioxidant activities of a sesame protein hydrolysate (SPH-B), as well as its peptide fractions. Four peptide fractions (F1; >100 kDa, F2; 10-100 kDa, F3; 1-10 kDa, and F4; <1 kDa) of SPH-B were prepared. The characteristics and antioxidant properties of SPH-B and its peptide fractions were evaluated. Sesame protein (SP) contained protein fractions with molecular weights ranging from 10 to 44 kDa, whereas SPH-B had peptide fractions ranging from 8 to 44 kDa. The peptide fractions had molecular weight ranging from 7 to 10 kDa. The four peptide fractions had a higher α-helix content and lower surface hydrophobicity than SPH-B and SP. They exhibited better antioxidant properties, with higher ABTS and DPPH radical scavenging activities, higher metal chelating activity, and greater inhibition of linoleic acid peroxidation, suggesting that sesame peptide fractions can use as plant-based functional ingredients and potentially health-promoting properties.

2.
Front Microbiol ; 15: 1348063, 2024.
Article in English | MEDLINE | ID: mdl-38476938

ABSTRACT

Introduction: This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods: The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results: The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion: This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.

3.
Front Microbiol ; 14: 1285421, 2023.
Article in English | MEDLINE | ID: mdl-38033570

ABSTRACT

Introduction: Adaptive laboratory evolution (ALE) studies play a crucial role in understanding the adaptation and evolution of different bacterial species. In this study, we have investigated the adaptation and evolution of Salmonella enterica serovar Enteritidis to acetic acid using ALE. Materials and methods: Acetic acid concentrations below the minimum inhibitory concentration (sub-MIC) were used. Four evolutionary lineages (EL), namely, EL1, EL2, EL3, and EL4, of S. Enteritidis were developed, each demonstrating varying levels of resistance to acetic acid. Results: The acetic acid MIC of EL1 remained constant at 27 mM throughout 70 days, while the MIC of EL2, EL3, and EL4 increased throughout the 70 days. EL4 was adapted to the highest concentration of acetic acid (30 mM) and demonstrated the highest increase in its MIC against acetic acid throughout the study, reaching an MIC of 35 mM on day 70. The growth rates of the evolved lineages increased over time and were dependent on the concentration of acetic acid used during the evolutionary process. EL4 had the greatest increase in growth rate, reaching 0.33 (h-1) after 70 days in the presence of 30 mM acetic acid as compared to EL1, which had a growth rate of 0.2 (h-1) after 70 days with no exposure to acetic acid. Long-term exposure to acetic acid led to an increased MIC of human antibiotics such as ciprofloxacin and meropenem against the S. enterica evolutionary lineages. The MIC of ciprofloxacin for EL1 stayed constant at 0.016 throughout the 70 days while that of EL4 increased to 0.047. Bacterial whole genome sequencing revealed single-nucleotide polymorphisms in the ELs in various genes known to be involved in S. enterica virulence, pathogenesis, and stress response including phoP, phoQ, and fhuA. We also observed genome deletions in some of the ELs as compared to the wild-type S. Enteritidis which may have contributed to the bacterial acid adaptation. Discussion: This study highlights the potential for bacterial adaptation and evolution under environmental stress and underscores the importance of understanding the development of cross resistance to antibiotics in S. enterica populations. This study serves to enhance our understanding of the pathogenicity and survival strategies of S. enterica under acetic acid stress.

4.
J Food Prot ; 86(9): 100126, 2023 09.
Article in English | MEDLINE | ID: mdl-37414285

ABSTRACT

Previous environmental monitoring projects in food production facilities have revealed inconsistencies in how produce brush washer machines are cleaned after use; thus, the study of effective sanitation procedures for these machines is needed. Four chlorine solution treatments (ranging from 25 to 200 ppm), as well as a water-only treatment, were tested for efficacy in reducing bacterial loads for a selected small brush washer machine. Results indicate that rinsing with the machine's power and water alone, a frequent practice among some produce processors, yielded a reduction of 0.91-1.96 log CFU per brush roller in bacterial counts, which was not statistically significant (p > 0.05). However, the chlorine treatments were found to be effective in reducing bacterial loads significantly, with higher concentrations being the most effective. The 200 ppm and 100 ppm chlorine treatments yielded bacterial reductions of 4.08 and 3.95 log CFU per brush roller, respectively, leaving bacterial levels statistically similar to the levels at postprocess decontamination, meaning these are the most effective at killing bacteria of all the chlorine concentrations tested. These data suggest the use of at least 100 ppm chlorine sanitizer solution is a good method to sanitize hard-to-clean produce washing machines, yielding an approximate 4 log CFU reduction of the inoculated bacteria.


Subject(s)
Disinfectants , Disinfectants/pharmacology , Food Contamination/prevention & control , Food Contamination/analysis , Food Handling/methods , Chlorine/pharmacology , Colony Count, Microbial , Water , Food Microbiology
5.
Front Microbiol ; 14: 1197473, 2023.
Article in English | MEDLINE | ID: mdl-37378296

ABSTRACT

Sanitizing low-moisture food (LMF) processing equipment is challenging due to the increased heat resistance of Salmonella spp. in low-water activity (aw) environments. Food-grade oils mixed with acetic acid have been shown effective against desiccated Salmonella. In this study, different hydrocarbon chain-length (Cn) organic acids were tested against desiccated Salmonella by using 1% v/v water-in-oil (W/O) emulsion as the delivery system for 200 mM acid. Fluorescence lifetime imaging microscopy (FLIM) was utilized with a BODIPY-based molecular rotor to evaluate membrane viscosity under environmental conditions such as desiccation and temperature elevation. Drying hydrated Salmonella cells to 75% equilibrium relative humidity (ERH) increased the membrane viscosity from 1,199 to 1,309 mPa·s (cP) at 22°C. Heating to 45°C decreased the membrane viscosity of hydrated cells from 1,199 to 1,082 mPa·s, and decreased that of the desiccated cells from 1,309 to 1,245 mPa·s. At both 22°C and 45°C, desiccated Salmonella was highly susceptible (>6.5 microbial log reduction (MLR) per stainless-steel coupon) to a 30-min treatment with the W/O emulsions formulated with short carbon chain acids (C1-3). By comparison, the emulsion formulations with longer carbon chain acids (C4-12) showed little to no MLR at 22°C, but achieved >6.5 MLR at 45°C. Based upon the decreased Salmonella membrane viscosity and the increased antimicrobial efficacy of C4-12 W/O emulsions with increasing temperature, we propose that heating can make the membrane more fluid which may allow the longer carbon chain acids (C4-12) to permeate or disrupt membrane structures.

6.
Microbiol Spectr ; 11(3): e0529322, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37017552

ABSTRACT

Contamination with Salmonella spp. and Listeria monocytogenes is concerning across low-moisture food (LMF)-processing environments due to the pronounced survival of these organisms under dry conditions. This study treated desiccated bacteria with acetic acid delivered by oil with and without water-in-oil (W/O) emulsion. The influences of cellular desiccation, emulsion water concentration, water activity (aw), and treatment temperature were investigated. Acetic acid dissolved in oil (i.e., acidified oil) showed low levels of antimicrobial efficacy. After treatment with acidified oil (200 mM acetic acid at 22°C for 30 min), Salmonella enterica serovar Enteritidis phage type 30 cells desiccated to 75% equilibrium relative humidity (ERH) and 33% ERH were reduced by 0.69 and 0.05 log CFU/coupon, respectively. The dispersion of a low level of water (≥0.3%, vol/vol) within the acidified oil with the surfactant (i.e., acidified W/O emulsion) significantly enhanced the antimicrobial efficacy. After treatment with the acidified W/O emulsion (200 mM acetic acid at 22°C for 20 min), desiccated Salmonella (4-strain cocktail) and L. monocytogenes (3-strain cocktail) cells were reduced by >6.52 log most probable number (MPN)/coupon, regardless of the desiccation levels. Increased efficacy was observed with temperature elevation. Reduced efficacy was observed when glycerol was added to the aqueous phase of the emulsion to decrease the solution aw, indicating that the enhanced efficacy of the acidified W/O emulsion was associated with differential osmotic pressure. The antimicrobial mechanism may be due to the membrane disruption induced by acetic acid, in combination with the hypoosmotic stress provided by W/O emulsion, creating cellular lysis, as illustrated by electron micrographs. IMPORTANCE Aqueous-based cleaning and sanitation are undesirable in processing facilities that manufacture low-moisture foods such as peanut butter and chocolate. Alcohol-based sanitization is advantageous because it leaves no residue on the contact surface but requires the processing facility to close temporarily due to flammability. At >6.52 log kill of desiccated Salmonella and Listeria monocytogenes cells, the developed oil-based formulation has the potential to be an effective dry sanitation method.


Subject(s)
Acetic Acid , Food Microbiology , Emulsions/pharmacology , Acetic Acid/pharmacology , Water/analysis , Salmonella , Colony Count, Microbial
7.
Foods ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38231609

ABSTRACT

This study investigated the mechanism of how lauric arginate ethyl ester (LAE) improves the photoinactivation of bacteria by curcumin after diluting the 100 µmol/L stock curcumin-LAE micelle solution to the concentration used during the treatment based on the curcumin concentration. The photoinactivation of bacteria was conducted by irradiating the 1 µmol/L curcumin-LAE solution containing cocktails of Escherichia coli and Listeria innocua strains (7 log CFU/mL) for 5 min with UV-A light (λ = 365 nm). The changes in solution turbidity, curcumin stability, and bacterial morphology, viability, and recovery were observed using SEM, TEM, and live/dead cell assays. The study found that LAE enhances the photoinactivation of bacteria by increasing the permeability of cell membranes which could promote the interaction of reactive oxygen species produced by photosensitized curcumin with the cell components. The combination of curcumin and LAE was demonstrated to be more effective in inhibiting bacterial recovery at pH 3.5 for E. coli, while LAE alone was more effective at pH 7.0 for L. innocua.

8.
Appl Environ Microbiol ; 88(16): e0093522, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35938829

ABSTRACT

When processing low-moisture, high-fat foods such as peanut butter and nuts, water-based sanitization is unsuitable due to the immiscible nature of water and fats. Dry sanitization mainly uses flammable compounds such as isopropanol, requiring equipment cooling before application. The use of oils to deliver antimicrobials against foodborne pathogens enables the use of elevated temperatures, thus eliminating processing downtimes associated with dry sanitization. This study delivered organic acids and medium-chain fatty acids (100, 250, and 500 mM) in peanut oil against Salmonella enterica serovar Enteritidis desiccated at 75% relative humidity (RH). Acetic acid in peanut oil (AO) at 45°C was the most effective food-grade acid, causing a 4.4-log reduction in S. Enteritidis at 500 mM. AO caused cellular injury and was effective against a variety of S. Enteritidis strains. Confocal microscopy demonstrated that cells treated with 50 mM and 250 mM AO had significant membrane damage and reduced cellular respiration compared to untreated controls. Treatment efficacy increased with the increase in acid concentration, treatment duration, and treatment temperature from 20 to 45°C. Transmission electron microscopy after treatment with 100 and 250 mM AO revealed membrane ruffling and leakage in cell membranes, especially at 45°C. Reduction of the RH to 33% during desiccation of S. Enteritidis caused a decrease in AO efficacy compared to that at 75% RH, while at a higher RH of 90%, there was an increase in the efficacy of AO. Acidified oils can serve as robust, cost-effective replacements for dry-sanitation methods and improve safety of low moisture foods. IMPORTANCE Currently, dry sanitization products used during food processing often contain flammable compounds which require processing to stop and equipment to cool before application. This leads to processing downtimes and consequently, economic losses. This challenge is compounded by exposure to dryness which frequently renders Salmonella resistant to heat and different antimicrobials. Thus, the development of heat-tolerant oil-based antimicrobial compounds is a novel approach for sanitizing in low-moisture (dry) environments such as those found in peanut butter, tree nuts, and chocolate manufacturing. This study shows that acidified oils, especially acetic acid in peanut oil at elevated temperatures (45°C), was highly effective against desiccated Salmonella. Acidified oils have the potential to replace dry sanitizers, increasing the frequency of sanitization, leading to an improvement in food safety.


Subject(s)
Food Handling , Food Microbiology , Colony Count, Microbial , Food Handling/methods , Peanut Oil , Salmonella enteritidis , Water/analysis
9.
Int J Food Microbiol ; 373: 109699, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35569192

ABSTRACT

Microbial contamination of food contact surfaces in food processing industries is a significant health hazard. Evaluating the efficacy of sanitizing agents used during food processing is essential to ensure public health and safety. This study describes an optical screening method using an oCelloScope to quantify the number of surviving bacterial cells, expressed as microbial log reduction (MLR), after antimicrobial treatment. We tested the efficacy of two sanitizing agents, sodium hypochlorite and benzalkonium chloride, against desiccated cells of three pathogens, S. Enteritidis, E. coli O157: H7, and L. monocytogenes that are of concern on food processing surfaces. Stainless steel slides were used to mimic commercial food processing surfaces. Bacterial cells were desiccated at 75% relative humidity (RH) before antimicrobial treatment on stainless steel surfaces, and survivor levels were analyzed via plate counts to calculate MLR. These were compared to MLR values generated using the oCelloScope. For analysis of MLR using the oCelloScope, cells were desiccated at 75% RH on polystyrene microtiter plates, treated with antimicrobials, and surviving cell numbers were analyzed. Our results show that MLR values of treated desiccated cells calculated using the BCA algorithm of the oCelloScope were comparable to the values generated using the traditional plate count assay for the same concentration and treatment duration of the antimicrobials against all the tested pathogens. MLR could not be calculated for a non-lytic antimicrobial (curcumin and UV-A irradiation) against E. coli O157:H7, however, modified growth curves demonstrated an antimicrobial effect of curcumin and irradiation treatment. The results indicate that this method can be used for rapid screening of MLR of lytic antimicrobial compounds. Quantification of MLR using the oCelloScope is an effective tool to rapidly identify appropriate antimicrobial treatments and can be used to study novel antimicrobial compounds in the future.


Subject(s)
Anti-Infective Agents , Curcumin , Escherichia coli O157 , Listeria monocytogenes , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Curcumin/pharmacology , Food Microbiology , Stainless Steel/pharmacology
10.
Foods ; 10(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34441554

ABSTRACT

Microbial photoinactivation using ultraviolet (UV) or visible light can be enhanced by photosensitizers. This study assessed the efficacy of encapsulating a food-grade photosensitizer (curcumin) in surfactant micelles on its water dispersibility, chemical stability, and antimicrobial activity. Stock curcumin-surfactant solutions were prepared with Surfynol 465 (S465) or Tween 80 (T80) (5 mM sodium citrate buffer). The antimicrobial activity of curcumin-loaded surfactant solutions was determined by monitoring the inactivation of Escherichia coli O157: H7 and Listeria innocua after 5-min irradiation with UV-A light (λ = 365 nm). The solutions mixed with the bacterial suspensions contained 1 µM curcumin and each surfactant below, near, and above their critical micelle concentrations (CMCs). The addition of surfactants at any level to the curcumin solution enhanced its dispersibility, stability, and efficacy as a photosensitizer, thereby enhancing its antimicrobial activity. Gram-positive bacteria were more susceptible than Gram-negative bacteria when curcumin-loaded micelles were used against them. The photoinactivation efficacy of curcumin-surfactant solutions depended on the pH of the solution (low > high), surfactant type (S465 > T80), and the amount of surfactant present (below CMC ≥ near CMC > above CMC = unencapsulated curcumin). This result suggests that excessive partitioning of curcumin into micelles reduced its ability to interact with microbial cells. Synergistic antimicrobial activity was observed when S465 was present below or near the CMC with curcumin at pH 3.5, which could be attributed to a more effective interaction of the photosensitizer with the cell membranes as supported by the fluorescence lifetime micrographs. The use of a micelle-based delivery system facilitates adsorption and generation of reactive oxygen species in the immediate environment of the microbial cell, enhancing photoinactivation.

11.
J Food Prot ; 83(10): 1829-1837, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32991724

ABSTRACT

ABSTRACT: The Food Safety Modernization Act, specifically the Produce Safety Rule, requires growers to clean and sanitize food contact surfaces to protect against produce contamination. An ATP monitoring device is a potential sanitation tool to monitor the efficacy of an on-farm cleaning and sanitation program that could help growers meet regulatory expectations mandated by the Produce Safety Rule. This ATP monitoring device uses bioluminescence to detect all ATP (found in bacteria and produce matter cells) from a swabbed surface. Because little work has been done to test the efficacy of these tools under postharvest conditions, the present study evaluated ATP measurement for postharvest food contact surface cleanliness evaluation. Concentrations of leafy greens (spinach, romaine, and red cabbage, with or without Listeria innocua) were used as organic matter applied to stainless steel, high-density polyethylene plastic, and bamboo wood coupons to represent postharvest food contact surfaces. The ATP levels on the coupons were then measured by using swabs and an ATP monitoring device. Results showed that the concentration of L. innocua and leafy greens on a food contact surface had a highly significant effect on the ATP monitoring device reading (P < 0.0001). The ATP monitoring device had a lower limit of detection for L. innocua at 4.5 log CFU per coupon. The type of leafy green on a food contact surface did not affect the ATP reading (P = 0.88). Leafy greens with added L. innocua had a higher ATP reading when compared with saline and L. innocua, demonstrating the presence of leafy green matter contributes to ATP reading when combined with L. innocua. The different food contact surfaces had different ATP response readings (P = 0.03), resulting in no detectable levels of bacteria and/or leafy green material from bamboo wood surfaces (P = 0.16). On the basis of our results, the ATP measurement is an appropriate tool to measure produce or bacterial contamination on stainless steel or high-density polyethylene plastic surfaces; however, it is not recommended for wood surfaces.


Subject(s)
Food Microbiology , Listeria , Adenosine Triphosphate , Colony Count, Microbial , Food Contamination/analysis , Food Contamination/prevention & control , Food Safety , Stainless Steel
12.
J Colloid Interface Sci ; 556: 568-576, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31479830

ABSTRACT

The objective of this study was to provide insights into the mechanisms involved in the mass transport of antimicrobial compounds from essential oil nanoemulsions to bacterial cell membranes. Origanum oil-in-water nanoemulsions were produced using spontaneous emulsification by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing relatively small droplets (d < 60 nm) were produced using this low-energy method. The nature of the ripening inhibitor used in the oil phase of the nanoemulsions affected the antimicrobial activity of the nanoemulsions: corn (LCT) > medium-chain triglycerides (MCT). Differences in antimicrobial activity were attributed to the differences in the rate of transfer of hydrophobic antimicrobial constituents from the nanoemulsion to the MCT emulsion, which was used to mimic the hydrophobic region of the bacterial cell membranes. Each antimicrobial nanoemulsion was separated from the MCT emulsion by a dialysis tubing. Dialysis tubing with two different pore sizes was used, one excluding nanoemulsion droplet and micelle delivery, allowing the delivery of antimicrobial compounds only through the aqueous phase and the other by both the aqueous phase and micelles. For origanum oil nanoemulsions, the delivery of all antimicrobial agents occurred more efficiently when micelles were present.


Subject(s)
Anti-Infective Agents , Nanostructures/chemistry , Oils, Volatile , Polysorbates , Salmonella/growth & development , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Wall/metabolism , Emulsions , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Polysorbates/chemistry , Polysorbates/pharmacology
13.
Food Microbiol ; 72: 89-97, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29407409

ABSTRACT

Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices.


Subject(s)
Bacteria/chemistry , Boronic Acids/analysis , Ponds/microbiology , Spectrum Analysis, Raman/methods , Spinacia oleracea/microbiology , Bacteria/isolation & purification , Bacteria/metabolism , Boronic Acids/metabolism , Food Contamination/analysis
14.
J Colloid Interface Sci ; 514: 208-216, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29257975

ABSTRACT

Essential oils, such as those isolated from cinnamon, are effective natural antimicrobial agents, but their utilization is limited by their low water-solubility. In this study, phase inversion temperature (PIT) was used to prepare cinnamon oil nanoemulsions. To this aim, it was hypothesized that cinnamon oil nanoemulsions could be fabricated by optimizing the oil phase composition and surfactant concentration of the system and their stability could be enhanced using a cooling-dilution method during the PIT. A mixture of cinnamon oil, non-ionic surfactant, and water was heated above the PIT of the system, and then rapidly cooled with continuous stirring, which led to the spontaneous generation of small oil droplets. The impact of oil phase composition and surfactant concentration on the formation and stability of the nanoemulsions was determined. Cinnamon oil nanoemulsions with the smallest mean droplet diameter (101 nm) were formed using 40:60 wt% of cinnamon oil and medium chain triglyceride (MCT) in the total lipid phase. Increasing surfactant concentration significantly decreased the mean droplet diameter of the nanoemulsions but did not alter their particle morphology. In addition, using the cooling-dilution method, the nanoemulsions were stable for at least 31 days when stored at 4 °C or 25 °C.

15.
Food Chem ; 245: 104-111, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287320

ABSTRACT

The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Thymus Plant/chemistry , Triglycerides/chemistry , Bacteria/chemistry , Bacteria/drug effects , Cell Membrane , Dialysis , Emulsions/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Nanostructures/chemistry , Oils, Volatile/chemistry , Polysorbates/chemistry , Surface-Active Agents/chemistry
16.
Anal Bioanal Chem ; 409(8): 2229-2238, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28091716

ABSTRACT

A novel method was developed to rapidly concentrate, detect, and differentiate bacteria in skimmed milk using surface enhanced Raman scattering (SERS) mapping on 4-mercaptophenylboronic acid (4-MPBA) functionalized silver (Ag) dendrites. The 4-MPBA functionalized Ag dendritic SERS substrate was used to capture the bacterial cells and enhance the bacterial signal. Salmonella, a significantly important food pathogen, was used as the representative strain to optimize and evaluate the developed method. The capture efficiency for Salmonella enterica subsp enterica BAA1045 (SE1045) was 84.92 ± 3.25% at 106 CFU/mL and as high as 99.65 ± 3.58% at 103 CFU/mL. Four different strains, two gram-negative and two gram-positive, can be clearly distinguished by their SERS spectra using principle component analysis. A mapping technique was utilized to automatically collect 400 spectra over an area of 60 µm × 60 µm to construct a visual image for a sensitive and statistically reliable detection within 30 min. Using this method, we were able to detect as low as 103 CFU/mL bacterial cells in 50 mM NH4HCO3 solution and 102 CFU/mL cells in both 1% casein and skimmed milk. Our results demonstrate the feasibility of using SERS mapping method coupled with 4-MPBA functionalized Ag dendrites for rapid and sensitive bacteria detection in complex liquid samples. Graphical Abstract A novel SERS mapping method based on 4-mercaptophenylboronic acid functionalized silver (Ag) dendrites was developed to rapidly concentrate, detect, and differentiate bacteria.


Subject(s)
Bacteria/isolation & purification , Boronic Acids/chemistry , Milk/microbiology , Silver/chemistry , Spectrum Analysis, Raman/methods , Sulfhydryl Compounds/chemistry , Animals , Bacteria/classification , Limit of Detection , Reproducibility of Results
17.
J Food Prot ; 79(7): 1115-26, 2016 07.
Article in English | MEDLINE | ID: mdl-27357030

ABSTRACT

Over the past decade, demand has increased for natural, minimally processed produce, including sprout-based products. Sanitization with 20,000 ppm of calcium hypochlorite is currently recommended for all sprouting seeds before germination to limit sprout-related foodborne outbreaks. A potentially promising disinfectant as an alternative to calcium hypochlorite is acidified spontaneous essential oil nanoemulsions. In this study, the efficacy of an acidified carvacrol nanoemulsion was tested against mung beans and broccoli seeds artificially contaminated with a Salmonella enterica Enteritidis cocktail (ATCC BAA-709, ATCC BAA-711, and ATCC BAA-1045). Treatments were performed by soaking inoculated seeds in acidified (50 mM acetic or levulinic acid) carvacrol nanoemulsions (4,000 or 8,000 ppm) for 30 or 60 min. After treatment, the number of surviving cells was determined via plate counts and/or the most probable number (MPN) approach. Treatment for 30 min successfully reduced Salmonella Enteritidis by 4 log CFU/g on mung beans (from an initial contamination level of 4.2 to 4.6 log CFU/g) and by 2 log CFU/g on broccoli seeds (from an initial contamination level of 2.4 to 2.6 log CFU/g) to below our detection limit (≤3 MPN/g). Treated seeds were sprouted and tested for the presence of pathogens and sprout yield. The final sprout product had no detectable pathogens, and total sprout yield was not influenced by any treatment.


Subject(s)
Escherichia coli O157 , Food Microbiology , Colony Count, Microbial , Cymenes , Germination , Medicago sativa , Monoterpenes , Salmonella , Seeds
18.
Biofouling ; 32(5): 523-33, 2016.
Article in English | MEDLINE | ID: mdl-27020838

ABSTRACT

Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.


Subject(s)
Bacillus cereus/physiology , Bacterial Adhesion , Biofilms , Bacterial Load , Detergents/pharmacology , Kinetics , Polytetrafluoroethylene , Stainless Steel
19.
Analyst ; 141(4): 1356-62, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26750611

ABSTRACT

Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination of Salmonella enterica and Escherichia coli on silver dendrites. The sample preparation was first optimized to maximize sensitivity. The mapping method was then used to scan through the bacterial cells adsorbed on the surface of silver dendrites. The intrinsic and distinct SERS signals of bacterial cells were used as the basis for label-free detection and discrimination. The results show the developed method is able to detect single bacterial cells adsorbed on the silver dendrites with a limit of detection as low as 10(4) CFU mL(-1), which is two orders of magnitude lower than the traditional SERS method under the same experimental condition. The time needed for collecting a 225 points map was approximately 24 minutes. Moreover, the developed SERS mapping method can realize simultaneous detection and identification of Salmonella enterica subsp. enterica BAA1045 and Escherichia coli BL21 from a mixture sample using principle component analysis. Our results demonstrate the great potential of the label-free SERS mapping method to detect, identify and quantify bacteria and bacterial mixtures simultaneously.


Subject(s)
Escherichia coli/cytology , Salmonella enterica/cytology , Single-Cell Analysis/methods , Spectrum Analysis, Raman/methods , Time Factors
20.
Food Microbiol ; 51: 10-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26187822

ABSTRACT

The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds.


Subject(s)
Brassica/microbiology , Escherichia coli O157/drug effects , Foodborne Diseases/prevention & control , Monoterpenes/pharmacology , Raphanus/microbiology , Salmonella enteritidis/drug effects , Seeds/microbiology , Brassica/growth & development , Colony Count, Microbial , Cymenes , Emulsions/chemistry , Food Microbiology , Foodborne Diseases/microbiology , Germination/drug effects , Microbial Viability/drug effects , Nanoparticles/chemistry , Nanospheres , Raphanus/growth & development , Seeds/drug effects , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...