Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Viruses ; 15(4)2023 04 07.
Article in English | MEDLINE | ID: mdl-37112907

ABSTRACT

Spissistilus festinus (Hemiptera: Membracidae) transmit grapevine red blotch virus (GRBV, Grablovirus, Geminiviridae) in greenhouse settings; however, their role as a vector of GRBV in vineyards is unknown. Following controlled exposures of aviruliferous S. festinus for two weeks on infected, asymptomatic vines in a California vineyard in June and a 48 h gut clearing on alfalfa, a nonhost of GRBV, approximately half of the released insects tested positive for GRBV (45%, 46 of 102), including in the salivary glands of dissected individuals (11%, 3 of 27), indicating acquisition. Following controlled exposures of viruliferous S. festinus for two to six weeks on GRBV-negative vines in vineyards in California and New York in June, transmission of GRBV was detected when two S. festinus were restricted to a single leaf (3%, 2 of 62 in California; 10%, 5 of 50 in New York) but not with cohorts of 10-20 specimens on entire or half shoots. This work was consistent with greenhouse assays in which transmission was most successful with S. festinus exposed to a single leaf (42%, 5 of 12), but rarely occurred on half shoots (8%, 1 of 13), and never on entire shoots (0%, 0 of 18), documenting that the transmission of GRBV is facilitated through the feeding of fewer S. festinus on a restricted area of grapevine tissue. This work demonstrates S. festinus is a GRBV vector of epidemiological importance in vineyards.


Subject(s)
Geminiviridae , Hemiptera , Vitis , Humans , Animals , Medicago sativa , Farms , Plant Diseases , Geminiviridae/genetics
2.
Viruses ; 14(6)2022 05 26.
Article in English | MEDLINE | ID: mdl-35746628

ABSTRACT

Grapevine red blotch disease emerged within the past decade, disrupting North American vine stock production and vineyard profitability. Our understanding of how grapevine red blotch virus (GRBV), the causal agent of the disease, interacts with its Vitis hosts and insect vector, Spissistilus festinus, is limited. Here, we studied the capabilities of S. festinus to transmit GRBV from and to free-living vines, identified as first-generation hybrids of V. californica and V. vinifera 'Sauvignon blanc' (Vcal hybrids), and to and from V. vinifera 'Cabernet franc' (Vvin Cf) vines. The transmission rate of GRBV was high from infected Vcal hybrid vines to healthy Vcal hybrid vines (77%, 10 of 13) and from infected Vvin Cf vines to healthy Vcal hybrid vines (100%, 3 of 3). In contrast, the transmission rate of GRBV was low from infected Vcal hybrid vines to healthy Vvin Cf vines (15%, 2 of 13), and from infected Vvin Cf vines to healthy Vvin Cf vines (19%, 5 of 27). No association was found between transmission rates and GRBV titer in donor vines used in transmission assays, but the virus titer was higher in the recipient leaves of Vcal hybrid vines compared with recipient leaves of Vvin Cf vines. The transmission of GRBV from infected Vcal hybrid vines was also determined to be trans-stadial. Altogether, our findings revealed that free-living vines can be a source for the GRBV inoculum that is transmissible by S. festinus to other free-living vines and a wine grape cultivar, illustrating the interconnected roles of the two virus hosts in riparian areas and commercial vineyards, respectively, for virus spread. These new insights into red blotch disease epidemiology will inform the implementation of disease management strategies.


Subject(s)
Geminiviridae , Hemiptera , Vitis , Animals , Insect Vectors , Plant Diseases
3.
Phytopathology ; 111(10): 1851-1861, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33736453

ABSTRACT

The transmission mode of grapevine red blotch virus (GRBV, genus Grablovirus, family Geminiviridae) by Spissistilus festinus, the three-cornered alfalfa hopper, is unknown. By analogy with other members in the family Geminiviridae, we hypothesized circulative, nonpropagative transmission. Time-course experiments revealed GRBV in dissected guts, hemolymph, and heads with salivary glands after a 5-, 8-, and 10-day exposure to infected grapevines, respectively. After a 15-day acquisition on infected grapevines and subsequent transfer on alfalfa, a nonhost of GRBV, the virus titer decreased over time in adult insects, as shown by quantitative PCR. Snap bean proved to be a feeding host of S. festinus and a pseudosystemic host of GRBV after Agrobacterium tumefaciens-mediated delivery of an infectious clone. The virus was efficiently transmitted by S. festinus from infected snap bean plants to excised snap bean trifoliates (90%) or grapevine leaves (100%) but less efficiently from infected grapevine plants to excised grapevine leaves (10%) or snap bean trifoliates (67%). Transmission of GRBV also occurred trans-stadially but not via seeds. The virus titer was significantly higher in (i) guts and hemolymph relative to heads with salivary glands, and (ii) adults emanating from third compared with first instars that emerged on infected grapevine plants and developed on snap bean trifoliates. This study demonstrated circulative, nonpropagative transmission of GRBV by S. festinus with an extended acquisition access period compared with other viruses in the family Geminiviridae and marked differences in transmission efficiency between grapevine, the natural host, and snap bean, an alternative herbaceous host.


Subject(s)
Geminiviridae , Medicago sativa , Geminiviridae/genetics , Plant Diseases
4.
Microbiol Resour Announc ; 9(26)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32586859

ABSTRACT

We report the complete and annotated genome sequence of a Gram-positive bacterium, Leifsonia sp. strain PS1209, a potato endophyte that was isolated from apparently healthy tubers of potato cultivar NY166. The circular genome is 4,091,164 bp long, with a GC content of 69.08%, containing 3,926 genes.

5.
Plant Dis ; 102(11): 2308-2316, 2018 11.
Article in English | MEDLINE | ID: mdl-30207510

ABSTRACT

The distribution and diversity of grapevine red blotch virus (GRBV) and wild Vitis virus 1 (WVV1) (genus Grablovirus; family Geminiviridae) were determined in free-living Vitis spp. in northern California and New York from 2013 to 2017. Grabloviruses were detected by polymerase chain reaction in 28% (57 of 203) of samples from California but in none of the 163 samples from New York. The incidence of GRBV in free-living vines was significantly higher in samples from California counties with high compared with low grape production (χ2 = 83.09; P < 0.001), and in samples near (<5 km) to compared with far (>5 km) from vineyards (χ2 = 57.58; P < 0.001). These results suggested a directional spread of GRBV inoculum predominantly from vineyards to free-living Vitis spp. WVV1 incidence was also significantly higher in areas with higher grape production acreage (χ2 = 16.02; P < 0.001). However, in contrast to GRBV, no differential distribution of WVV1 incidence was observed with regard to distance from vineyards (χ2 = 0.88; P = 0.3513). Two distinct phylogenetic clades were identified for both GRBV and WVV1 isolates from free-living Vitis spp., although the nucleotide sequence variability of the genomic diversity fragment was higher for WWV1 (94.3 to 99.8% sequence identity within clade 1 isolates and 90.1 to 100% within clade 2 isolates) than GRBV (98.3% between clade 1 isolates and 96.9 to 100% within clade 2 isolates). Additionally, evidence for intraspecific recombination events was found in WVV1 isolates and confirmed in GRBV isolates. The prevalence of grabloviruses in California free-living vines highlights the need for vigilance regarding potential grablovirus inoculum sources in order to protect new vineyard plantings and foundation stock vineyards in California.


Subject(s)
Geminiviridae/genetics , Genetic Variation , Plant Diseases/virology , Vitis/virology , California , Farms , Geminiviridae/isolation & purification , Geography , New York , Phylogeny
6.
Phytopathology ; 108(7): 902-909, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29436986

ABSTRACT

Grapevine red blotch virus (GRBV) has a monopartite single-stranded DNA genome and is the type species of the genus Grablovirus in the family Geminiviridae. To address the etiological role of GRBV in the recently recognized red blotch disease of grapevine, infectious GRBV clones were engineered from the genome of each of the two previously identified phylogenetic clades for Agrobacterium tumefaciens-mediated inoculations of tissue culture-grown Vitis spp. plants. Following agroinoculation and one or two dormancy cycles, systemic GRBV infection was detected by multiplex polymerase chain reaction (PCR) in Vitis vinifera exhibiting foliar disease symptoms but not in asymptomatic vines. Infected rootstock genotype SO4 (V. berlandieri × V. riparia) exhibited leaf chlorosis and cupping, while infection was asymptomatic in agroinoculated 110R (V. berlandieri × V. rupestris), 3309C (V. riparia × V. rupestris), and V. rupestris. Spliced GRBV transcripts of the replicase-associated protein coding region accumulated in leaves of agroinfected vines, as shown by reverse-transcription PCR; this was consistent with systemic infection resulting from virus replication. Additionally, a virus progeny identical in nucleotide sequence to the infectious GRBV clones was recovered from agroinfected vines by rolling circle amplification, cloning, and sequencing. Concomitantly, subjecting naturally infected grapevines to microshoot tip culture resulted in an asymptomatic plant progeny that tested negative for GRBV in multiplex PCR. Altogether, our agroinoculation and therapeutic experiments fulfilled Koch's postulates and revealed the causative role of GRBV in red blotch disease.


Subject(s)
Geminiviridae/genetics , Plant Diseases/virology , Vitis/virology , Geminiviridae/classification , Geminiviridae/pathogenicity , Phylogeny , Plant Leaves/virology
7.
Arch Virol ; 163(1): 259-262, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28942517

ABSTRACT

During screening of non-cultivated (wild) grapevine (Vitis sp.) from Napa County, California for the grapevine red blotch virus (GRBV; genus Glabrovirus, family Geminiviridae), an atypical polymerase chain reaction product pattern was observed. Rolling circle amplification followed by cloning and sequencing revealed the presence of a circular DNA characteristic of geminiviruses. The complete genome of nine isolates of the virus ranged from 3204 to 3278 nt in size. The genome most closely resembled that of GRBV in both sequence (57 to 59% identity) and organization. With limited sequence identity to described geminiviruses, this virus warrants designation as a new species, and the name 'Wild Vitis virus 1' is proposed.


Subject(s)
Geminiviridae/genetics , Vitis/virology , Base Sequence , Genome, Viral , North America , Phylogeny
8.
Virus Res ; 241: 156-162, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28392444

ABSTRACT

Grapevine red blotch-associated virus (GRBaV), the causative agent of red blotch disease, is a member of the genus Grablovirus, in the family Geminiviridae and the first known geminivirus of Vitis spp. Limited information is available on the epidemiology of red blotch disease. A 2-hectare Vitis vinifera cv. 'Cabernet franc' vineyard in Napa County, California, USA was selected for monitoring GRBaV spread over a three-year period (2014-2016) based on an initially low disease incidence and an aggregation of symptomatic vines at the edge of the vineyard proximal to a wooded riparian area. The incidence of diseased plants increased by 1-2% annually. Spatial analysis of diseased plants in each year using ordinary runs analysis within rows and Spatial Analysis by Distance IndicEs (SADIE) demonstrated aggregation. Spatiotemporal analysis between consecutive years within the association function of SADIE revealed a strong overall association among all three years (X=0.874-0.945). Analysis of epidemic spread fitting a stochastic spatiotemporal model using the Monte Carlo Markov Chain method identified strong evidence for localized (within vineyard) spread. A spatial pattern consisting of a combination of strongly aggregated and randomly isolated symptomatic vines within 8-years post-planting suggested unique epidemic attributes compared to those of other grapevine viruses vectored by mealybugs and soft scales or by dagger nematodes for which typical within-row spread and small-scale autocorrelation are well documented. These findings are consistent with the existence of a new type of vector for a grapevine virus.


Subject(s)
Geminiviridae/growth & development , Insect Vectors/virology , Plant Diseases/virology , Tenebrio/virology , Vitis/virology , Animals , California , Incidence , Wine
9.
Phytopathology ; 106(6): 663-70, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26960112

ABSTRACT

Red blotch is an emerging disease of grapevine associated with grapevine red blotch-associated virus (GRBaV). The virus spreads with infected planting stocks but no vector of epidemiological significance has been conclusively identified. A vineyard block of red-blotch-affected Vitis vinifera 'Cabernet franc' clone 214 was observed in California, with a clustering of infected, symptomatic vines focused along one edge of the field proximal to a riparian habitat with free-living Vitis spp. No genetic heterogeneity was observed in a 587-nucleotide region of the GRBaV genome in a population of 44 Cabernet franc clone 214 isolates. By contrast, genetic differences were observed in isolates from other cultivars and clones growing in adjacent blocks. GRBaV was confirmed infecting four free-living vines, two of which were shown to be V. californica × V. vinifera hybrids. The genomes of three free-living GRBaV vine isolates and seven from V. vinifera cultivars were compared; free-living vine isolates were shown to be more similar to each other and a 'Merlot' isolate than to the other cultivated vine isolates. The finding that GRBaV is present in free-living Vitis spp. indicates the virus can be spread by natural (nonhuman-mediated) means, and we hypothesize that in-field spread of GRBaV is occurring.


Subject(s)
Agriculture , Plant Diseases/virology , Plant Viruses/isolation & purification , Vitis/virology , Base Sequence , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics
10.
Phytopathology ; 104(2): 211-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24111573

ABSTRACT

Crop-specific diagnostics to simultaneously detect a large number of pathogens provides an invaluable platform for the screening of vegetative material prior to its propagation. Here we report the use of what is to-date the largest published example of a crop-specific macroarray for the detection of 38 of the most prevalent or emergent viruses to infect grapevine. The reusable array consists of 1,578 virus-specific 60 to 70mer oligonucleotide probes and 19 plant and internal control probes spotted onto an 18 × 7 cm nylon membrane. In a survey of 99 grapevines from the United States and Europe, virus infections were detected in 46 selections of Vitis vinifera, V. labrusca, and interspecific hybrids. The majority of infected vines (30) was singly infected, while 16 were mixed-infected with viruses from two or more families. Representatives of the four main virus families Betaflexiviridae, Closteroviridae, Secoviridae, and Tymoviridae present in grapevines were found alone and in combination, with a notable bias in representation by members of the family Tymoviridae. This work demonstrates the utility of the macroarray platform for the multiplex detection of viruses in a single crop, its potential for characterizing grapevine virus associations, and usefulness for rapid diagnostics of introduced material in quarantine centers or in certification programs.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Plant Diseases/virology , Plant Viruses/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Vitis/virology , Closteroviridae/genetics , Closteroviridae/isolation & purification , DNA Primers/genetics , DNA, Complementary/genetics , Enzyme-Linked Immunosorbent Assay , Nucleic Acid Hybridization , Plant Viruses/genetics , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Viral/genetics , Species Specificity , Tymoviridae/genetics , Tymoviridae/isolation & purification
11.
Mol Plant Microbe Interact ; 23(8): 991-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20615110

ABSTRACT

Understanding the molecular basis of plant responses to pathogen-associated molecular patterns (PAMPs) is an active area of research in the field of plant-microbe interactions. A growing number of plant genes involved in various steps of PAMP-triggered immunity (PTI) pathways and microbial factors involved in the elicitation or suppression of PTI have been identified. These studies have largely relied on Arabidopsis thaliana and, therefore, most of the PTI assays have been developed and optimized for that model plant system. Although PTI is a conserved feature among plants, the response spectra vary across different species. Thus, there is a need for robust PTI assays in other pathosystems, such as those involving Solanaceae plant-pathogen interactions, which include many economically important plants and their diseases. We have optimized molecular, cellular, and whole-plant methods to measure PTI responses in two widely studied solanaceous species, tomato (Solanum lycopersicum) and Nicotiana benthamiana. Here, we provide detailed protocols for measuring various PTI-associated phenotypes, including bacterial populations after pretreatment of leaves with PAMPs, induction of reporter genes, callose deposition, activation of mitogen-activated protein kinases, and a luciferase-based reporter system. These methods will facilitate limited genetic screens and detailed characterization of potential PTI-related genes in model and economically important Solanaceae spp.-pathogen interactions.


Subject(s)
Nicotiana/immunology , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Arabidopsis/immunology , Arabidopsis/microbiology , Bacterial Infections/immunology , Bacterial Infections/pathology , Cell Wall/microbiology , Host-Pathogen Interactions , Immunity, Innate , Plant Diseases/immunology , Plant Leaves/microbiology , Protoplasts/microbiology , Nicotiana/microbiology
12.
Plant Cell ; 21(4): 1305-23, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19366901

ABSTRACT

XopN is a virulence factor from Xanthomonas campestris pathovar vesicatoria (Xcv) that is translocated into tomato (Solanum lycopersicum) leaf cells by the pathogen's type III secretion system. Xcv DeltaxopN mutants are impaired in growth and have reduced ability to elicit disease symptoms in susceptible tomato leaves. We show that XopN action in planta reduced pathogen-associated molecular pattern (PAMP)-induced gene expression and callose deposition in host tissue, indicating that XopN suppresses PAMP-triggered immune responses during Xcv infection. XopN is predicted to have irregular, alpha-helical repeats, suggesting multiple protein-protein interactions in planta. Consistent with this prediction, XopN interacted with the cytosolic domain of a Tomato Atypical Receptor-Like Kinase1 (TARK1) and four Tomato Fourteen-Three-Three isoforms (TFT1, TFT3, TFT5, and TFT6) in yeast. XopN/TARK1 and XopN/TFT1 interactions were confirmed in planta by bimolecular fluorescence complementation and pull-down analysis. Xcv DeltaxopN virulence defects were partially suppressed in transgenic tomato leaves with reduced TARK1 mRNA levels, indicating that TARK1 plays an important role in the outcome of Xcv-tomato interactions. These data provide the basis for a model in which XopN binds to TARK1 to interfere with TARK1-dependent signaling events triggered in response to Xcv infection.


Subject(s)
Bacterial Proteins/physiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Solanum lycopersicum/microbiology , Virulence Factors/physiology , Xanthomonas campestris/pathogenicity , Amino Acid Motifs , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Binding Sites , Gene Expression Regulation, Plant , Glucans/metabolism , Immunity, Innate , Solanum lycopersicum/enzymology , Solanum lycopersicum/metabolism , Mutation , Phenotype , Plant Diseases/immunology , Plant Proteins/analysis , Plant Proteins/chemistry , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Protein Isoforms/metabolism , RNA Interference , RNA, Messenger/metabolism , Signal Transduction , Virulence , Virulence Factors/analysis , Virulence Factors/chemistry , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism
13.
Appl Environ Microbiol ; 74(14): 4366-80, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18502925

ABSTRACT

Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative nonribosomal peptide synthetase (NPS) gene, MaNPS1. Four of six gene disruption mutants identified were examined further. Chemical analyses showed the presence of serinocyclins, cyclic heptapeptides, in the extracts of conidia of control strains, whereas the compounds were undetectable in DeltaManps1 mutants treated identically or in other developmental stages, suggesting that MaNPS1 encodes a serinocyclin synthetase. Production of the cyclic depsipeptide destruxins, M. anisopliae metabolites also predicted to be synthesized by an NPS, was similar in DeltaManps1 mutant and control strains, indicating that MaNPS1 does not contribute to destruxin biosynthesis. Surprisingly, a MaNPS1 fragment detected DNA polymorphisms that correlated with relative destruxin levels produced in vitro, and MaNPS1 was expressed concurrently with in vitro destruxin production. DeltaManps1 mutants exhibited in vitro development and responses to external stresses comparable to control strains. No detectable differences in pathogenicity of the DeltaManps1 mutants were observed in bioassays against beet armyworm and Colorado potato beetle in comparison to control strains. This is the first report of targeted disruption of a secondary metabolite gene in M. anisopliae, which revealed a novel cyclic peptide spore factor.


Subject(s)
Agrobacterium tumefaciens/genetics , Gene Silencing , Metarhizium/genetics , Peptide Synthases/genetics , Peptides, Cyclic/genetics , Animals , Chromatography, High Pressure Liquid , DNA, Fungal/isolation & purification , Fungal Proteins/genetics , Genetic Vectors , Genomic Instability , Metarhizium/pathogenicity , Plasmids , Polymerase Chain Reaction , RNA, Fungal/isolation & purification , Spodoptera/microbiology , Spores, Fungal/genetics , Transformation, Genetic , Virulence
14.
J Feline Med Surg ; 10(2): 120-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17905624

ABSTRACT

The aim of this study was to determine the prevalence and risk factors for Mycoplasma haemofelis (Mhf) and 'Candidatus Mycoplasma haemominutum' (Mhm) infections in domestic cats tested for feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) with a commercial enzyme-linked immunosorbent assay (ELISA) kit. Based on serological testing, cats were grouped as i) FIV-positive (n=25); ii) FeLV-positive (n=39); iii) FIV/FeLV-positive (n=8); and iv) FIV/FeLV-negative (n=77). Complete blood counts were followed by DNA extraction, species-specific polymerase chain reaction (16S rRNA gene) for Mhf and Mhm and Southern blotting for all animals. Mhf DNA was found in 4.0, 2.6, 12.5 and 7.8% of the cats from groups i, ii, iii and iv, respectively, while 32, 5.1, 50 and 5.2% of these animals had an Mhm infection. Cats with FIV (OR=4.25, P=0.009) and both FIV and FeLV (OR=7.56, P=0.014) were at greater risk of being hemoplasma infected than retroviral-negative cats, mainly due to Mhm infection (OR=8.59, P=0.001 and OR=18.25, P=0.001, respectively). Among pure-breed cats, FIV-positive status was associated with hemoplasma infection (OR 45.0, P=0.001).


Subject(s)
Cat Diseases/epidemiology , Feline Acquired Immunodeficiency Syndrome/epidemiology , Leukemia, Feline/epidemiology , Mycoplasma Infections/veterinary , Animals , Blood Cell Count/veterinary , Blotting, Southern/veterinary , Brazil/epidemiology , Cats , Comorbidity , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Male , Mycoplasma/isolation & purification , Mycoplasma Infections/epidemiology , Polymerase Chain Reaction/veterinary , Prevalence , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...