Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38076832

ABSTRACT

Temperature can impact every reaction and molecular interaction essential to a cell. For organisms that cannot regulate their own temperature, a major challenge is how to adapt to temperatures that fluctuate unpredictability and on variable timescales. Biomolecular condensation offers a possible mechanism for encoding temperature-responsiveness and robustness into cell biochemistry and organization. To explore this idea, we examined temperature adaptation in a filamentous-growing fungus called Ashbya gossypii that engages biomolecular condensates containing the RNA-binding protein Whi3 to regulate mitosis and morphogenesis. We collected wild isolates of Ashbya that originate in different climates and found that mitotic asynchrony and polarized growth, which are known to be controlled by the condensation of Whi3, are temperature sensitive. Sequence analysis in the wild strains revealed changes to specific domains within Whi3 known to be important in condensate formation. Using an in vitro condensate reconstitution assay we found that temperature impacts the relative abundance of protein to RNA within condensates and that this directly impacts the material properties of the droplets. Finally, we found that exchanging Whi3 genes between warm and cold isolates was sufficient to rescue some, but not all, condensate-related phenotypes. Together these data demonstrate that material properties of Whi3 condensates are temperature sensitive, that these properties are important for function, and that sequence optimizes properties for a given climate.

2.
Nucleic Acids Res ; 50(14): 8168-8192, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35871289

ABSTRACT

Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.


Subject(s)
Coronavirus Nucleocapsid Proteins , RNA, Double-Stranded , SARS-CoV-2 , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , Temperature
3.
bioRxiv ; 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34159327

ABSTRACT

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.

4.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33290746

ABSTRACT

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Genome, Viral , Nucleocapsid/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Nucleocapsid/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , Vero Cells , COVID-19 Drug Treatment
5.
Mol Biol Cell ; 31(14): 1498-1511, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32401664

ABSTRACT

The spatial structure and physical properties of the cytosol are not well understood. Measurements of the material state of the cytosol are challenging due to its spatial and temporal heterogeneity. Recent development of genetically encoded multimeric nanoparticles (GEMs) has opened up study of the cytosol at the length scales of multiprotein complexes (20-60 nm). We developed an image analysis pipeline for 3D imaging of GEMs in the context of large, multinucleate fungi where there is evidence of functional compartmentalization of the cytosol for both the nuclear division cycle and branching. We applied a neural network to track particles in 3D and then created quantitative visualizations of spatially varying diffusivity. Using this pipeline to analyze spatial diffusivity patterns, we found that there is substantial variability in the properties of the cytosol. We detected zones where GEMs display especially low diffusivity at hyphal tips and near some nuclei, showing that the physical state of the cytosol varies spatially within a single cell. Additionally, we observed significant cell-to-cell variability in the average diffusivity of GEMs. Thus, the physical properties of the cytosol vary substantially in time and space and can be a source of heterogeneity within individual cells and across populations.


Subject(s)
Cytosol/physiology , Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Cytoplasm/metabolism , Cytoplasm/physiology , Cytosol/metabolism , Eremothecium/metabolism , Machine Learning , Nanoparticles , Orientation, Spatial/physiology
6.
J Cell Biol ; 219(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32399546

ABSTRACT

Biomolecular condensation is a way of organizing cytosol in which proteins and nucleic acids coassemble into compartments. In the multinucleate filamentous fungus Ashbya gossypii, the RNA-binding protein Whi3 regulates the cell cycle and cell polarity through forming macromolecular structures that behave like condensates. Whi3 has distinct spatial localizations and mRNA targets, making it a powerful model for how, when, and where specific identities are established for condensates. We identified residues on Whi3 that are differentially phosphorylated under specific conditions and generated mutants that ablate this regulation. This yielded separation of function alleles that were functional for either cell polarity or nuclear cycling but not both. This study shows that phosphorylation of individual residues on molecules in biomolecular condensates can provide specificity that gives rise to distinct functional identities in the same cell.


Subject(s)
Cell Cycle/genetics , Cell Polarity/genetics , Eremothecium/metabolism , Fungal Proteins/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Alleles , Base Sequence , Cell Compartmentation/genetics , Cytosol/metabolism , Cytosol/ultrastructure , Eremothecium/genetics , Eremothecium/ultrastructure , Fungal Proteins/genetics , Gene Expression , Hot Temperature , Mutation , Phosphorylation , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Stress, Physiological/genetics
7.
Science ; 360(6391): 922-927, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29650703

ABSTRACT

RNA promotes liquid-liquid phase separation (LLPS) to build membraneless compartments in cells. How distinct molecular compositions are established and maintained in these liquid compartments is unknown. Here, we report that secondary structure allows messenger RNAs (mRNAs) to self-associate and determines whether an mRNA is recruited to or excluded from liquid compartments. The polyQ-protein Whi3 induces conformational changes in RNA structure and generates distinct molecular fluctuations depending on the RNA sequence. These data support a model in which structure-based, RNA-RNA interactions promote assembly of distinct droplets and protein-driven, conformational dynamics of the RNA maintain this identity. Thus, the shape of RNA can promote the formation and coexistence of the diverse array of RNA-rich liquid compartments found in a single cell.


Subject(s)
Peptides/chemistry , Phase Transition , RNA, Messenger/chemistry , RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Base Sequence , Cyclins/chemistry , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...