Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Nature ; 631(8021): 686-693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961287

ABSTRACT

The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.


Subject(s)
Analgesics, Opioid , Drug Evaluation, Preclinical , Naloxone , Receptors, Opioid, mu , Small Molecule Libraries , Animals , Humans , Male , Mice , Allosteric Regulation/drug effects , Analgesics, Opioid/antagonists & inhibitors , Analgesics, Opioid/pharmacology , Binding Sites/drug effects , Cryoelectron Microscopy , Fentanyl/antagonists & inhibitors , Fentanyl/pharmacology , Kinetics , Ligands , Models, Molecular , Morphine/antagonists & inhibitors , Morphine/pharmacology , Naloxone/administration & dosage , Naloxone/chemistry , Naloxone/metabolism , Naloxone/pharmacology , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/chemistry , Narcotic Antagonists/metabolism , Narcotic Antagonists/pharmacology , Opiate Overdose/drug therapy , Protein Conformation/drug effects , Protein Stability/drug effects , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/metabolism , Sf9 Cells , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Mice, Inbred C57BL
2.
NeuroImmune Pharm Ther ; 3(1): 1-6, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38711842

ABSTRACT

Objectives: HIV-1 Tat (transactivator of transcription) protein disrupts dopaminergic transmission and potentiates the rewarding effects of cocaine. Allosteric modulators of the dopamine transporter (DAT) have been shown to reverse Tat-induced DAT dysfunction. We hypothesized that a novel DAT allosteric modulator, SRI-30827, would counteract Tat-induced potentiation of cocaine reward. Methods: Doxycycline (Dox)-inducible Tat transgenic (iTat-tg) mice and their G-tg (Tat-null) counterparts were tested in a cocaine conditioned place preference (CPP) paradigm. Mice were treated 14 days with saline, or Dox (100 mg/kg/day, i.p.) to induce Tat protein. Upon induction, mice were place conditioned two days with cocaine (10 mg/kg/day) after a 1-h daily intracerebroventricular (i.c.v.) pretreatment with SRI-30827 (1 nmol) or a vehicle control, and final place preference assessed as a measure of cocaine reward. Results: Dox-treatment significantly potentiated cocaine-CPP in iTat-tg mice over the response of saline-treated control littermates. SRI-30827 treatment eliminated Tat-induced potentiation without altering normal cocaine-CPP in saline-treated mice. Likewise, SRI-30827 did not alter cocaine-CPP in both saline- and Dox-treated G-tg mice incapable of expressing Tat protein. Conclusions: These findings add to a growing body of evidence that allosteric modulation of DAT could provide a promising therapeutic intervention for patients with comorbid HIV-1 and cocaine use disorder (CUD).

3.
Molecules ; 28(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005269

ABSTRACT

Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52-0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics.


Subject(s)
Analgesics, Opioid , Peptides, Cyclic , Mice , Animals , Analgesics, Opioid/pharmacology , Peptides, Cyclic/pharmacology , Receptors, Opioid, delta/agonists , Morphine/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Receptors, Opioid, mu/agonists , Peptides
4.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37765026

ABSTRACT

The macrocyclic tetrapeptide CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) and its D-Trp isomer exhibit kappa opioid receptor (KOR) antagonism which prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference. Here, we evaluated the effects of substitution of Trp and D-Trp on the peptides' opioid activity, antinociceptive tolerance, and the ability to prevent relapse to extinguished drug-CPP. Six analogs were synthesized using a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, efficacy in the [35S]GTPγS assay, metabolic stability in mouse liver microsomes, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance, and conditioned place preference (CPP) were also assessed in vivo, and the ameliorating effect of analogs on the reinstatement of extinguished cocaine-place preference was assessed. Substitutions of other D-amino acids for D-Trp did not affect (or in one case increased) KOR affinity, while two of the three substitutions of an L-amino acid for Trp decreased KOR affinity. In contrast, all but one substitution increased mu opioid receptor (MOR) affinity in vitro. The metabolic stabilities of the analogs were similar to those of their respective parent peptides, with analogs containing a D-amino acid being much more rapidly metabolized than those containing an L-amino acid in this position. In vivo, CJ-15,208 analogs demonstrated antinociception, although potencies varied over an 80-fold range and the mediating opioid receptors differed by substitution. KOR antagonism was lost for all but the D-benzothienylalanine analog, and the 2'-naphthylalanine analog instead demonstrated significant delta opioid receptor (DOR) antagonism. Introduction of DOR antagonism coincided with reduced acute opioid antinociceptive tolerance and prevented stress-induced reinstatement of extinguished cocaine-CPP.

5.
Brain Behav Immun Health ; 31: 100659, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455861

ABSTRACT

Background: Previous studies have indicated a close link between the inflammatory response, exacerbated by circadian disruption and psychostimulants such as cocaine and methamphetamine (METH). Indicators of this inflammation include cortisol and acute-phase proteins (APPs) like C-reactive protein (CRP), complement C3 (C3), and serum amyloid A (SAA). The connection between these inflammation markers and circulating mitochondrial DNA (mtDNA) has been gaining attention. However, the specific influence of cocaine and METH on APP, cortisol, and mtDNA levels in mice with disturbed circadian rhythm has yet to be explored, which is the main aim of this research. Methods: In our study, we employed 10-12-week-old male C57BL/6J mice, which underwent an imposed 6-h phase advance every six days for a total of eight cycles. This process led to the formation of mice with disrupted circadian rhythm and sleep disorders (CRSD). We administered 11 dosages of cocaine and METH 15 mg/kg and 20 mg/kg, respectively to these CRSD mice over the course of 22 days. Quantitative assessments of CRP, C3, SAA, cortisol, and cell-free circulating mtDNA were conducted using enzyme-linked immunosorbent assay (ELISA), Western Blot, and quantitative real-time polymerase chain reaction (qRT-PCR) techniques. Results: The experiment revealed that disruption in circadian rhythm alone or cocaine or METH on their own increased CRP, C3, SAA, and cortisol levels in comparison with the control group. CRSD mice, exposed to cocaine and METH, showed a significant rise in CRP, C3, and SAA, while those without exposure remained stable. We also found a reduction in circulating cell-free mtDNA in all CRSD mice, regardless of cocaine and METH exposure. Conclusions: The findings of our study affirm that the levels of CRP, C3, SAA, and cortisol, which reflect inflammation, are enhanced by circadian disruption, cocaine, and METH, and these levels show a strong correlation with the content of circulating cell-free mtDNA. Furthermore, it also shows the potential link between the disruption of the circadian clock and the inflammatory response triggered by cocaine and METH.

6.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838810

ABSTRACT

New strategies facilitate the design of cyclic peptides which can penetrate the brain. We have designed a bicyclic peptide, OL-CTOP, composed of the sequences of a selective µ-opioid receptor antagonist, CTOP (f-cyclo(CYwOTX)T) (X = penicillamine, Pen; O = ornithine) and odorranalectin, OL (YASPK-cyclo(CFRYPNGVLAC)T), optimized its solid-phase synthesis and demonstrated its ability for nose-to-brain delivery and in vivo activity. The differences in reactivity of Cys and Pen thiol groups protected with trityl and/or acetamidomethyl protecting groups toward I2 in different solvents were exploited for selective disulfide bond formation on the solid phase. Both the single step and the sequential strategy applied to macrocyclization reactions generated the desired OL-CTOP, with the sequential strategy yielding a large quantity and better purity of crude OL-CTOP. Importantly, intranasally (i.n.s.) administered OL-CTOP dose-dependently antagonized the analgesic effect of morphine administered to mice through the intracerebroventricular route and prevented morphine-induced respiratory depression. In summary, the results demonstrate the feasibility of our solid-phase synthetic strategy for the preparation of the OL-CTOP bicyclic peptide containing two disulfide bonds and reveal the potential of odorranalectin for further modifications and the targeted delivery to the brain.


Subject(s)
Solid-Phase Synthesis Techniques , Somatostatin , Mice , Animals , Administration, Intranasal , Somatostatin/pharmacology , Receptors, Opioid, mu , Peptides/pharmacology , Morphine/pharmacology
7.
Nature ; 613(7945): 767-774, 2023 01.
Article in English | MEDLINE | ID: mdl-36450356

ABSTRACT

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Subject(s)
Drug Design , Fentanyl , Morphinans , Receptors, Opioid, mu , Animals , Mice , Analgesics, Opioid/chemistry , Analgesics, Opioid/metabolism , Arrestins/metabolism , Cryoelectron Microscopy , Fentanyl/analogs & derivatives , Fentanyl/chemistry , Fentanyl/metabolism , Ligands , Morphinans/chemistry , Morphinans/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/ultrastructure , Binding Sites , Nociception
8.
Metabolites ; 12(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144274

ABSTRACT

Disturbances in the circadian rhythm alter the normal sleep-wake cycle, which increases vulnerability to drug abuse. Drug abuse can disrupt several homeostatic processes regulated by the circadian rhythm and influence addiction paradigms, including cravings for cocaine. The relationship between circadian rhythm and cocaine abuse is complex and bidirectional, and disruption impacts both brain function and metabolic profiles. Therefore, elucidating the impact of circadian rhythm changes and cocaine abuse on the human metabolome may provide new insights into identifying potential biomarkers. We examine the effect of cocaine administration with and without circadian rhythm sleep disruption (CRSD) on metabolite levels and compare these to healthy controls in an in vivo study. A metabolomics analysis is performed on the control, CRSD, cocaine, and CRSD with cocaine groups. Plasma metabolite concentrations are analyzed using a liquid chromatography electrochemical array platform. We identify 242 known metabolites compared to the control; 26 in the CRSD with cocaine group, 4 in the CRSD group, and 22 in the cocaine group are significantly differentially expressed. Intriguingly, in the CRSD with cocaine treatment group, the expression levels of uridine monophosphate (p < 0.008), adenosine 5'-diphosphate (p < 0.044), and inosine (p < 0.019) are significantly altered compared with those in the cocaine group. In summary, alterations in purine and pyrimidine metabolism provide clues regarding changes in the energy profile and metabolic pathways associated with chronic exposure to cocaine and CRSD.

9.
Neuropharmacology ; 220: 109239, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36126727

ABSTRACT

Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.


Subject(s)
Cocaine-Related Disorders , Cocaine , HIV-1 , Animals , Cocaine/metabolism , Cocaine/pharmacology , Cocaine-Related Disorders/drug therapy , Cricetinae , Cricetulus , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Doxycycline , Humans , Mice , Mice, Transgenic , Reward , Trans-Activators , Transcription Factor DP1/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics
10.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077029

ABSTRACT

The design and development of analgesics with mixed-opioid receptor interactions has been reported to decrease side effects, minimizing respiratory depression and reinforcing properties to generate safer analgesic therapeutics. We synthesized bis-cyclic guanidine heterocyclic peptidomimetics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for the mu-opioid receptor (MOR), delta-opioid receptor (DOR), and kappa-opioid receptor (KOR) across the series, with compound 1968-22 displaying good affinity for all three receptors. Central intracerebroventricular (i.c.v.) administration of 1968-22 produced dose-dependent, opioid receptor-mediated antinociception in the mouse 55 °C warm-water tail-withdrawal assay, and 1968-22 also produced significant antinociception up to 80 min after oral administration (10 mg/kg, p.o.). Compound 1968-22 was detected in the brain 5 min after intravenous administration and was shown to be stable in the blood for at least 30 min. Central administration of 1968-22 did not produce significant respiratory depression, locomotor effects or conditioned place preference or aversion. The data suggest these bis-cyclic guanidine heterocyclic peptidomimetics with multifunctional opioid receptor activity may hold potential as new analgesics with fewer liabilities of use.


Subject(s)
Peptidomimetics , Respiratory Insufficiency , Analgesics/chemistry , Analgesics/pharmacology , Analgesics, Opioid , Animals , Guanidine/pharmacology , Guanidines/pharmacology , Ligands , Mice , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Receptors, Opioid , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism
11.
Mol Brain ; 15(1): 69, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941658

ABSTRACT

HIV is a major global public threat burdening society, yet the exact mechanism of HIV pathogenesis needs to be elucidated. In the era of epigenetic therapy, N-terminal acetylation (Nt-acetylation) changes induced by viral infection might play a critical role in virus-host interactions in HIV infection. The mitochondrial epigenetic mechanism, predominantly Nt acetylation, holds HIV immunopathogenesis and is vastly unexplored. The challenge is to single out the specific pathological role of NAT changes in HIV-associated neurodegeneration. Therefore, this nano review aims to shine light on Nt acetylation in HIV pathogenesis, which we believe can lead to effective future therapeutic strategies against HIV-associated neurodegeneration.


Subject(s)
HIV Infections , N-Terminal Acetyltransferases , Acetylation , Epigenesis, Genetic , HIV Infections/genetics , Humans , N-Terminal Acetyltransferases/genetics , N-Terminal Acetyltransferases/metabolism , Protein Processing, Post-Translational
12.
Mol Ther Nucleic Acids ; 29: 243-258, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35892093

ABSTRACT

Clinical research has proven that HIV-positive (HIV+) individuals with cocaine abuse show behavioral and neurocognitive disorders. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), are known to regulate gene expression in the contexts of HIV infection and drug abuse. However, there are no specific lncRNA or miRNA biomarkers associated with HIV-1 Transactivator of transcription protein (Tat) and cocaine coexposure. In the central nervous system (CNS), astrocytes are the primary regulators of energy metabolism, and impairment of the astrocytic energy supply can trigger neurodegeneration. The aim of this study was to uncover the roles of lncRNAs and miRNAs in the regulation of messenger RNA (mRNA) targets affected by HIV infection and cocaine abuse. Integrative bioinformatics analysis revealed altered expression of 10 lncRNAs, 10 miRNAs, and 4 mRNA/gene targets in human primary astrocytes treated with cocaine and HIV-1 Tat. We assessed the alterations in the expression of two miRNAs, hsa-miR-2355 and hsa-miR-4726-5p; four lncRNAs, LINC01133, H19, HHIP-AS1, and NOP14-AS1; and four genes, NDUFA9, KYNU, HKDC1, and LIPG. The results revealed interactions in the LINC01133-hsa-miR-4726-5p-NDUFA9 axis that may eventually help us understand cocaine- and HIV-1 Tat-induced astrocyte dysfunction that may ultimately result in neurodegeneration.

13.
Molecules ; 27(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35684553

ABSTRACT

Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10-45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6-20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44-1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.


Subject(s)
Neuralgia , Receptors, sigma , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Disease Models, Animal , Hyperalgesia/drug therapy , Ligands , Male , Mice , Neuralgia/drug therapy
14.
Pharmacol Biochem Behav ; 217: 173405, 2022 06.
Article in English | MEDLINE | ID: mdl-35584724

ABSTRACT

Opioid use disorder (OUD) relapse rates are discouragingly high, underscoring the need for new treatment options. The macrocyclic tetrapeptide natural product CJ-15,208 and its stereoisomer [d-Trp]CJ-15,208 demonstrate kappa opioid receptor (KOR) antagonist activity upon oral administration which prevents stress-induced reinstatement of cocaine-seeking behavior. In order to further explore the structure-activity relationships and expand the potential therapeutic applications of KOR antagonism for the treatment of OUD, we screened a series of 24 analogs of [d-Trp]CJ-15,208 with the goal of enhancing KOR antagonist activity. From this screening, analog 22 arose as a compound of interest, demonstrating dose-dependent KOR antagonism after central and oral administration lasting at least 2.5 h. In further oral testing, analog 22 lacked respiratory, locomotor, or reinforcing effects, consistent with the absence of opioid agonism. Pretreatment with analog 22 (30 mg/kg, p.o.) prevented stress-induced reinstatement of extinguished morphine conditioned place preference and reduced some signs of naloxone-precipitated withdrawal in mice physically dependent on morphine. Collectively, these data support the therapeutic potential of KOR antagonists to support abstinence in OUD and ameliorate opioid withdrawal.


Subject(s)
Morphine , Receptors, Opioid, kappa , Administration, Oral , Analgesics, Opioid/pharmacology , Animals , Mice , Mice, Inbred C57BL , Morphine/pharmacology , Narcotic Antagonists/pharmacology , Peptides, Cyclic
15.
Commun Biol ; 5(1): 236, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301411

ABSTRACT

Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.


Subject(s)
HIV Infections , Nanoparticles , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Clathrin/metabolism , Cognition , Drugs, Chinese Herbal , HIV Infections/metabolism , Hippocampus/metabolism , Mice , Neurogenesis/physiology
16.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054797

ABSTRACT

Neuropathic pain is a significant problem with few effective treatments lacking adverse effects. The sigma-1 receptor (S1R) is a potential therapeutic target for neuropathic pain, as antagonists for this receptor effectively ameliorate pain in both preclinical and clinical studies. The current research examines the antinociceptive and anti-allodynic efficacy of SI 1/28, a recently reported benzylpiperazine derivative and analog of the S1R antagonist SI 1/13, that was 423-fold more selective for S1R over the sigma-2 receptor (S2R). In addition, possible liabilities of respiration, sedation, and drug reinforcement caused by SI 1/28 have been evaluated. Inflammatory and chemical nociception, chronic nerve constriction injury (CCI) induced mechanical allodynia, and adverse effects of sedation in a rotarod assay, conditioned place preference (CPP), and changes in breath rate and locomotor activity were assessed after i.p. administration of SI 1/28. Pretreatment with SI 1/28 produced dose-dependent antinociception in the formalin test, with an ED50 (and 95% C.I.) value of 13.2 (7.42-28.3) mg/kg, i.p. Likewise, SI 1/28 produced dose-dependent antinociception against visceral nociception and anti-allodynia against CCI-induced neuropathic pain. SI 1/28 demonstrated no impairment of locomotor activity, conditioned place preference, or respiratory depression. In summary, SI 1/28 proved efficacious in the treatment of acute inflammatory pain and chronic neuropathy without liabilities at therapeutic doses, supporting the development of S1R antagonists as therapeutics for chronic pain.


Subject(s)
Analgesics/therapeutic use , Hyperalgesia/drug therapy , Nociception , Receptors, sigma/antagonists & inhibitors , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , Disease Models, Animal , Hyperalgesia/complications , Inflammation/complications , Inflammation/pathology , Male , Mice, Inbred C57BL , Receptors, sigma/metabolism , Time Factors , Viscera/pathology , Sigma-1 Receptor
17.
Proteomics ; 22(9): e2100137, 2022 05.
Article in English | MEDLINE | ID: mdl-35081661

ABSTRACT

As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 µM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 µM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , Chronic Pain/metabolism , Cisplatin , Disease Models, Animal , Histone Code , Histones/metabolism , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neuralgia/metabolism , Proteomics
18.
J Neuroimmune Pharmacol ; 17(1-2): 152-164, 2022 06.
Article in English | MEDLINE | ID: mdl-33619645

ABSTRACT

Despite the success of combined antiretroviral therapy (cART) in reducing viral load, a substantial portion of Human Immunodeficiency Virus (HIV)+ patients report chronic pain. The exact mechanism underlying this co-morbidity even with undetectable viral load remains unknown, but the transactivator of transcription (HIV-Tat) protein is of particular interest. Functional HIV-Tat protein is observed even in cerebrospinal fluid of patients who have an undetectable viral load. It is hypothesized that Tat protein exposure is sufficient to induce neuropathic pain-like manifestations via both activation of microglia and generation of oxidative stress. iTat mice conditionally expressed Tat(1-86) protein in the central nervous system upon daily administration of doxycycline (100 mg/kg/d, i.p., up to 14 days). The effect of HIV-Tat protein exposure on the well-being of the animal was assessed using sucrose-evoked grooming and acute nesting behavior for pain-depressed behaviors, and the development of hyperalgesia assessed with warm-water tail-withdrawal and von Frey assays for thermal hyperalgesia and mechanical allodynia, respectively. Tissue harvested at select time points was used to assess ex vivo alterations in oxidative stress, astrocytosis and microgliosis, and blood-brain barrier integrity with assays utilizing fluorescence-based indicators. Tat protein induced mild thermal hyperalgesia but robust mechanical allodynia starting after 4 days of exposure, reaching a nadir after 7 days. Changes in nociceptive processing were associated with reduced sucrose-evoked grooming behavior without altering acute nesting behavior, and in spinal cord dysregulated free radical generation as measured by DCF fluorescence intensity, altered immunohistochemical expression of the gliotic markers, Iba-1 and GFAP, and increased permeability of the blood-brain barrier to the small molecule fluorescent tracer, sodium fluorescein, in a time-dependent manner. Pretreatment with the anti-inflammatory, indomethacin (1 mg/kg/d, i.p.), the antioxidant, methylsulfonylmethane (100 mg/kg/d i.p.), or the immunomodulatory agent, dimethylfumarate (100 mg/kg/d p.o.) thirty minutes prior to daily injections of doxycycline (100 mg/kg/d i.p.) over 7 days significantly attenuated the development of Tat-induced mechanical allodynia. Collectively, the data suggests that even acute exposure to HIV-1 Tat protein at pathologically relevant levels is sufficient to produce select neurophysiological and behavioral manifestations of chronic pain consistent with that reported by HIV-positive patients.


Subject(s)
Chronic Pain , HIV Infections , Humans , Mice , Animals , Antioxidants/pharmacology , HIV , Trans-Activators , Chronic Pain/drug therapy , Anti-Inflammatory Agents , Gene Products, tat , HIV Infections/drug therapy , Sucrose
19.
Handb Exp Pharmacol ; 271: 197-220, 2022.
Article in English | MEDLINE | ID: mdl-34463847

ABSTRACT

Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.


Subject(s)
Narcotic Antagonists , Receptors, Opioid, kappa , Animals , Drug Development , Humans , Ligands , Mice , Mice, Inbred C57BL
20.
Brain Sci ; 11(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34827437

ABSTRACT

The chronic irreversible regression of cognitive ability and memory function in human immunodeficiency virus (HIV)-associated dementia (HAND) is linked with late-stage HIV infection in the brain. The molecular-level signatures of neuroinflammation and neurodegeneration are linked with dysfunction in HAND patients. Protein expression changes and posttranslational modification are epigenetic cues for dementia and neurodegenerative disease. In this study quantitative proteome analysis was performed to comprehensively elucidate changes in protein profiles in HIV-positive (HIV+) human brains. Frontal and temporal lobes of normal and HIV+ brains were subjected to label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using the data-independent acquisition method. Comprehensive proteomic identification and quantification analysis revealed that 3294 total proteins and 251 proteins were differentially expressed in HIV+ brains; specifically, HIV+ frontal and temporal lobes had 132 and 119 differentially expressed proteins, respectively. Proteomic and bioinformatic analyses revealed protein alterations predominantly in the HIV+ frontal lobe region. The expression of GOLPH3, IMPDH2, DYNLL1, RPL11, and GPNMB proteins was significantly altered in HIV+ frontal lobes compared to that in normal brains. These proteins are associated with metabolic pathways, neurodegenerative disorders, and dementia. These proteomic-level changes may be potential biological markers and therapeutic targets to relieve the dementia-associated symptoms in individuals with HAND.

SELECTION OF CITATIONS
SEARCH DETAIL