Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Br J Sports Med ; 39(10): 742-6; discussion 742-6, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16183771

ABSTRACT

OBJECTIVES: To determine the effect of unknown exercise duration and an unexpected increase in exercise duration on rating of perceived exertion (RPE), affect, and running economy during treadmill running. METHODS: Sixteen well trained male and female runners completed three bouts of treadmill running at 75% of their peak treadmill running speed. In the first trial, they were told to run for 20 minutes and were stopped at 20 minutes (20 MIN). In another trial, they were told to run for 10 minutes, but at 10 minutes were told to run for a further 10 minutes (10 MIN). In the final trial, they were not told for how long they would be running but were stopped after 20 minutes (unknown, UN). During each of the running bouts, RPE, oxygen consumption (ml/kg/min), heart rate (beats/min), stride frequency (min(-1)), affect scores (arbitrary units), and attentional focus (percentage associative thought scores) were recorded. RESULTS: RPE increased significantly between 10 and 11 minutes in the 10 MIN compared with the 20 MIN and UN trials (p<0.05). The affect score decreased significantly between 10 and 11 minutes in the 10 MIN compared with the 20 MIN trial (p<0.05). Running economy, as measured by oxygen consumption, was significantly lower in the UN compared with the 20 MIN trial from 10 to 19 minutes (p<0.05). CONCLUSIONS: The change in RPE between 10 and 11 minutes in the 10 MIN trial suggests that RPE is not purely a measure of physical exertion, as treadmill speed was maintained at a constant pace both before and after the unexpected increase in exercise duration. The associated changes in affect score at similar times in the 10 MIN trial supports the hypothesis that RPE has an affective component.


Subject(s)
Affect/physiology , Exercise/psychology , Physical Exertion/physiology , Running/psychology , Exercise/physiology , Exercise Test/methods , Female , Heart Rate/physiology , Humans , Male , Oxygen Consumption/physiology , Physical Endurance/physiology , Running/physiology
2.
Vision Res ; 38(3): 347-74, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9536360

ABSTRACT

In Experiments 1-3, we monitored search performance as a function of target eccentricity under display durations that either allowed or precluded eye movements. The display was present either until observers responded, for 104 msec, or for 62 msec. In all three experiments an orientation asymmetry emerged: observers detected a tilted target among vertical distracters more efficiently than a vertical target among vertical distracters. As target eccentricity increased, reaction times and errors augmented, and the set size effect became more pronounced, more so for vertical than tilted targets. In Experiments 4-7, the stimulus spatial properties were manipulated: spatial frequency; size; and orientation. The eccentricity effect was more pronounced for vertical than tilted targets and for high- than low-spatial frequency targets. This effect was eliminated when either the size, the size and orientation, or the size and spatial frequency were magnified (M-cortical factor). By increasing the signal-to-noise ratio, magnification reduced the extent of both asymmetries; it aided more the detection of tilted than vertical and of high- than low-spatial frequency targets. Experiments 4-7 indicate that performance improvement in the magnified conditions was due to the specific pairing of stimulus size with retinal eccentricity and not to the larger stimulus size of the magnified conditions. We conclude that stimulus size, orientation and spatial frequency influence the extent of the eccentricity effect and the efficiency of search performance.


Subject(s)
Pattern Recognition, Visual/physiology , Eye Movements , Humans , Reaction Time , Rotation , Size Perception/physiology , Space Perception/physiology , Time Factors , Visual Cortex/physiology , Visual Fields
SELECTION OF CITATIONS
SEARCH DETAIL