Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 11(1): 122, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491289

ABSTRACT

Trimethylation of lysine 27 on histone 3 (H3K27me3) loss has been implicated in worse prognoses for patients with meningiomas. However, there have been challenges in measuring H3K27me3 loss, quantifying its impact, and interpreting its clinical utility. We conducted a systematic review across Pubmed, Embase, and Web of Science to identify studies examining H3K27me3 loss in meningioma. Clinical, histopathological, and immunohistochemistry (IHC) characteristics were aggregated. A meta-analysis was performed using a random-effects model to assess prevalence of H3K27me3 loss and meningioma recurrence risk. Study bias was characterized using the NIH Quality Assessment Tool and funnel plots. Nine publications met inclusion criteria with a total of 2376 meningioma cases. The prevalence of H3K27me3 loss was 16% (95% CI 0.09-0.27), with higher grade tumors associated with a significantly greater proportion of loss. H3K27me3 loss was more common in patients who were male, had recurrent meningiomas, or required adjuvant radiation therapy. Patients were 1.70 times more likely to have tumor recurrence with H3K27me3 loss (95% CI 1.35-2.15). The prevalence of H3K27me3 loss in WHO grade 2 and 3 meningiomas was found to be significantly greater in tissue samples less than five years old versus tissue of all ages and when a broader definition of IHC staining loss was applied. This analysis demonstrates that H3K27me3 loss significantly associates with more aggressive meningiomas. While differences in IHC and tumor tissue age have led to heterogeneity in studying H3K27me3 loss, a robust prognostic signal is present. Our findings suggest an opportunity to improve study design and standardize tissue processing to optimize clinical viability of this epigenetic marker.


Subject(s)
Histones , Meningeal Neoplasms , Meningioma , Child, Preschool , Female , Humans , Male , Biomarkers, Tumor/metabolism , Histones/genetics , Histones/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningioma/genetics , Meningioma/pathology , Prognosis
2.
Neurosurgery ; 91(2): 231-238, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35535984

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) has emerged as a promising noninvasive biomarker to capture tumor genetics in patients with brain tumors. Research into its clinical utility, however, has not been standardized because the sensitivity and specificity of ctDNA remain undefined. OBJECTIVE: To (1) review the primary literature about ctDNA in adults with glioma to compare the sensitivity and specificity of ctDNA in the cerebrospinal fluid vs the plasma and (2) to evaluate the effect of tumor grade on detection of ctDNA. METHODS: PRISMA-guided systematic review and meta-analysis was performed using published studies that assessed ctDNA in either plasma or cerebrospinal fluid among adult patients with confirmed glioma. Summary receiver operating characteristic curves were generated using the Rücker-Schumacher method, and area under the curve (AUC) was calculated. RESULTS: Meta-analysis revealed improved biomarker performance for CSF (AUC = 0.947) vs plasma (AUC = 0.741) ctDNA, although this did not reach statistical significance ( P = .141). Qualitative analysis revealed greater sensitivities among single-allele PCR and small, targeted next-generation sequencing panels compared with broader panels. It additionally demonstrated higher sensitivity of ctDNA detection in high-grade vs low-grade gliomas, although these analyses were limited by a lack of specificity reporting in many studies. CONCLUSION: ctDNA seems to be a highly sensitive and specific noninvasive biomarker among adults with gliomas. To maximize its performance, CSF should be studied with targeted genetic analysis platforms, particularly in high-grade gliomas. Further studies on ctDNA are needed to define its clinical utility in diagnosis, prognostication, glioblastoma pseudoprogression, and other scenarios wherein neoadjuvant therapies may be considered.


Subject(s)
Circulating Tumor DNA , Glioma , Adult , Biomarkers, Tumor/blood , Biomarkers, Tumor/cerebrospinal fluid , Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , Circulating Tumor DNA/cerebrospinal fluid , Circulating Tumor DNA/genetics , Glioma/diagnosis , Glioma/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL