Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Adv Exp Med Biol ; 1421: 39-61, 2023.
Article in English | MEDLINE | ID: mdl-37524983

ABSTRACT

Capturing the 'third dimension' of complex human form or anatomy has been an objective of artists and anatomists from the renaissance in the fifteenth and sixteenth centuries onwards. Many of these drawings, paintings, and sculptures have had a profound influence on medical teaching and the learning resources we took for granted until around 40 years ago. Since then, the teaching of human anatomy has undergone significant change, especially in respect of the technologies available to augment or replace traditional cadaver-based dissection instruction. Whilst resources such as atlases, wall charts, plastic models, and images from the Internet have been around for many decades, institutions looking to reduce the reliance on dissection-based teaching in medical or health professional training programmes have in more recent times increasingly had access to a range of other options for classroom-based instruction. These include digital resources and software programmes and plastinated specimens, although the latter come with a range of ethical and cost considerations. However, the urge to recapitulate the 'third dimension' of anatomy has seen the recent advent of novel resources in the form of 3D printed replicas. These 3D printed replicas of normal human anatomy dissections are based on a combination of radiographic imaging and surface scanning that captures critical 3D anatomical information. The final 3D files can either be augmented with false colour or made to closely resemble traditional prosections prior to printing. This chapter details the journey we and others have taken in the search for the 'third dimension'. The future of a haptically identical, anatomically accurate replica of human cadaver specimens for surgical and medical training is nearly upon us. Indeed, the need for hard copy replicas may eventually be superseded by the opportunities afforded by virtual reality (VR) and augmented reality (AR).

2.
Invest Ophthalmol Vis Sci ; 62(10): 10, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34379096

ABSTRACT

Purpose: In spite of clear differences in tissue function and significance to ocular disease, little is known about how immune responses differ between the retina and uveal tract. To this end we compared the effects of acute systemic inflammation on myeloid cells within the mouse retina, iris-ciliary body, and choroid. Methods: Systemic inflammation was induced in Cx3cr1gfp/gfp and CD11c-eYFP Crb1wt/wtmice by intraperitoneal lipopolysaccharide (LPS). In vivo fundus imaging was performed at two, 24, and 48 hours after LPS, and ocular tissue wholemounts were immunostained and studied by confocal microscopy. Flow cytometry was used to investigate the expression of activation markers (MHC class II, CD80, CD86) on myeloid cell populations at 24 hours. For functional studies, retinal microglia were isolated from LPS-exposed mice and cocultured with naïve OT-II CD4+ T-cells and ovalbumin peptide. T-cell proliferation was measured by flow cytometry and cytokine assays. Results: Systemic LPS altered the density and morphology of retinal microglia; however, retinal microglia did not upregulate antigen presentation markers and failed to stimulate naïve CD4+ T-cell proliferation in vitro. In contrast, uveal tract myeloid cells displayed a phenotype consistent with late-activated antigen-presenting cells at 24 hours. Systemic LPS induced remodeling of myeloid populations within the uveal tract, particularly in the choroid, where dendritic cells were partially displaced by macrophages at 24 hours. Conclusions: The disparate myeloid cell responses in the retina and uveal tract after systemic LPS highlight differential regulation of innate immunity within these tissue environments, observations that underpin and advance our understanding of ocular immune privilege.


Subject(s)
Dendritic Cells/pathology , Inflammation/pathology , Macrophages/pathology , Myeloid Cells/pathology , Retina/pathology , Uvea/pathology , Animals , Dendritic Cells/immunology , Disease Models, Animal , Flow Cytometry , Inflammation/immunology , Inflammation/metabolism , Macrophages/immunology , Mice, Inbred BALB C , Microscopy, Confocal , Myeloid Cells/immunology , Retina/immunology , Uvea/immunology
3.
Invest Ophthalmol Vis Sci ; 62(9): 6, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34232260

ABSTRACT

Purpose: Given the role of corneal sensory nerves during epithelial wound repair, we sought to examine the relationship between immune cells and polymodal nociceptors following corneal injury. Methods: Young C57BL/6J mice received a 2 mm corneal epithelial injury. One week later, corneal wholemounts were immunostained using ß-tubulin-488, TRPV1 (transient receptor potential ion channel subfamily V member-1, a nonselective cation channel) and immune cell (MHC-II, CD45 and CD68) antibodies. The sum length of TRPV1+ and TRPV1- nerve fibers, and their spatial association with immune cells, was quantified in intact and injured corneas. Results: TRPV1+ nerves account for ∼40% of the nerve fiber length in the intact corneal epithelium and ∼80% in the stroma. In the superficial epithelial layers, TRPV1+ nerve terminal length was similar in injured and intact corneas. In intact corneas, the density (sum length) of basal epithelial TRPV1+ and TRPV1- nerve fibers was similar, however, in injured corneas, TRPV1+ nerve density was higher compared to TRPV1- nerves. The degree of physical association between TRPV1+ nerves and intraepithelial CD45+ MHC-II+ CD11c+ cells was similar in intact and injured corneas. Stromal leukocytes co-expressed TRPV1, which was partially localized to CD68+ lysosomes, and this expression pattern was lower in injured corneas. Conclusions: TRPV1+ nerves accounted for a higher proportion of corneal nerves after injury, which may provide insights into the pathophysiology of neuropathic pain following corneal trauma. The close interactions of TRPV1+ nerves with intraepithelial immune cells and expression of TRPV1 by stromal macrophages provide evidence of neuroimmune interactions in the cornea.


Subject(s)
Cornea/metabolism , Corneal Injuries/metabolism , Homeostasis/physiology , Immunity, Cellular , TRPV Cation Channels/metabolism , Animals , Cell Count , Cornea/immunology , Cornea/pathology , Corneal Injuries/immunology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Nerve Fibers/pathology
4.
Med Teach ; 43(2): 189-197, 2021 02.
Article in English | MEDLINE | ID: mdl-33103933

ABSTRACT

The teaching of medical pathology has undergone significant change in the last 30-40 years, especially in the context of employing bottled specimens or 'pots' in classroom settings. The reduction in post-mortem based teaching in medical training programs has resulted in less focus being placed on the ability of students to describe the gross anatomical pathology of specimens. Financial considerations involved in employing staff to maintain bottled specimens, space constraints and concerns with health and safety of staff and student laboratories have meant that many institutions have decommissioned their pathology collections. This report details how full-colour surface scanning coupled with CT scanning and 3 D printing allows the digital archiving of gross pathological specimens and the production of reproductions or replicas of preserved human anatomical pathology specimens that obviates many of the above issues. With modern UV curable resin printing technology, it is possible to achieve photographic quality accurate replicas comparable to the original specimens in many aspects except haptic quality. Accurate 3 D reproductions of human pathology specimens offer many advantages over traditional bottled specimens including the capacity to generate multiple copies and their use in any educational setting giving access to a broader range of potential learners and users.


Subject(s)
Models, Anatomic , Printing, Three-Dimensional , Humans , Reproduction , Tomography, X-Ray Computed
5.
Anesth Analg ; 133(5): 1251-1259, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33181556

ABSTRACT

BACKGROUND: Pediatric airway models currently available for use in education or simulation do not replicate anatomy or tissue responses to procedures. Emphasis on mass production with sturdy but homogeneous materials and low-fidelity casting techniques diminishes these models' abilities to realistically represent the unique characteristics of the pediatric airway, particularly in the infant and younger age ranges. Newer fabrication technologies, including 3-dimensional (3D) printing and castable tissue-like silicones, open new approaches to the simulation of pediatric airways with greater anatomical fidelity and utility for procedure training. METHODS: After ethics approval, available/archived computerized tomography data sets of patients under the age of 2 years were reviewed to identify those suitable for designing new models. A single 21-month-old subject was selected for 3D reconstruction. Manual thresholding was then performed to produce 3D models of selected regions and tissue types within the dataset, which were either directly 3D-printed or later cast in 3D-printed molds with a variety of tissue-like silicones. A series of testing mannequins derived using this multimodal approach were then further refined following direct clinician feedback to develop a series of pediatric airway model prototypes. RESULTS: The initial prototype consisted of separate skeletal (skull, mandible, vertebrae) and soft-tissue (nasal mucosa, pharynx, larynx, gingivae, tongue, functional temporomandibular joint [TMJ] "sleeve," skin) modules. The first iterations of these modules were generated using both single-material and multimaterial 3D printing techniques to achieve the haptic properties of real human tissues. After direct clinical feedback, subsequent prototypes relied on a combination of 3D printing for osseous elements and casting of soft-tissue components from 3D-printed molds, which refined the haptic properties of the nasal, oropharyngeal, laryngeal, and airway tissues, and improved the range of movement required for airway management procedures. This approach of modification based on clinical feedback resulted in superior functional performance. CONCLUSIONS: Our hybrid manufacturing approach, merging 3D-printed components and 3D-printed molds for silicone casting, allows a more accurate representation of both the anatomy and functional characteristics of the pediatric airway for model production. Further, it allows for the direct translation of anatomy derived from real patient medical imaging into a functional airway management simulator, and our modular design allows for modification of individual elements to easily vary anatomical configurations, haptic qualities of components or exchange components to replicate pathology.


Subject(s)
Head/anatomy & histology , Manikins , Models, Anatomic , Neck/anatomy & histology , Printing, Three-Dimensional , Respiratory System/anatomy & histology , Age Factors , Head/diagnostic imaging , Humans , Infant , Neck/diagnostic imaging , Respiratory System/diagnostic imaging , Silicones/chemistry , Tomography, X-Ray Computed
6.
Invest Ophthalmol Vis Sci ; 61(10): 33, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32797202

ABSTRACT

Purpose: Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods: Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results: Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions: We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.


Subject(s)
Choroid/embryology , Melanocytes/cytology , Animals , Cell Count , Choroid/blood supply , Choroid/cytology , Choroid/ultrastructure , Coloring Agents , Fluorescent Antibody Technique , Melanocytes/physiology , Mice/embryology , Mice, Inbred C57BL/embryology , Mice, Mutant Strains , Microscopy, Confocal , Neovascularization, Physiologic
7.
Exp Eye Res ; 193: 107995, 2020 04.
Article in English | MEDLINE | ID: mdl-32156653

ABSTRACT

There is accumulating evidence that aging shifts the central nervous system milieu towards a proinflammatory state, with increased reactivity of microglia in the aging eye and brain having been implicated in the development of age-related neurodegenerative conditions. Indeed, alterations to microglial morphology and function have been recognized as a part of normal aging. Here, we sought to assess the effects of age on the retinal microglial and macrophage response to acute intraocular pressure (IOP) elevation. Further, we performed experiments whereby bone marrow from young or middle-aged mice was used to reconstitute the bone marrow of whole-body irradiated 12 month old mice. Bone marrow chimeric mice then underwent cannulation and IOP elevation 8 weeks after whole-body irradiation and bone marrow transplantation in order to determine whether the age of bone marrow alters the macrophage response to retinal injury. Our data show retinal macrophage reactivity and microglial morphological changes were enhanced in older mice when compared to younger mice in response to injury. When IOP elevation was performed after whole-body irradiation and bone marrow rescue, we noted subretinal macrophage accumulation and glial reactivity was reduced compared to non-irradiated mice that had also undergone IOP elevation. This effect was evident in both groups of chimeric mice that had received either young or middle-aged bone marrow, suggesting irradiation itself may alter the macrophage and glial response to injury rather than the age of bone marrow.


Subject(s)
Aging , Intraocular Pressure/physiology , Macrophages/pathology , Ocular Hypertension/pathology , Retina/pathology , Acute Disease , Animals , Disease Models, Animal , Male , Mice , Ocular Hypertension/physiopathology
8.
Ocul Immunol Inflamm ; 28(6): 898-907, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-31429614

ABSTRACT

PURPOSE: We report novel differences in mouse corneal DC morphology and density during local and systemic inflammation. METHODS: Local inflammation was induced by topical application of saline or TLR9 agonist CpG-ODN on abraded C57BL6J mouse corneas. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS) in CD11c-YFP mice. Corneal epithelial DCs from uninjured, injured and contralateral eyes were analysed by confocal microscopy. RESULTS: Following local CpG delivery on the injured cornea, the DC density and size increased in both central and peripheral regions. Contralateral uninjured eyes displayed enlarged DC morphology in the central cornea compared to naïve cohorts. After systemic LPS, the size of DCs in the central cornea was lower at 2 hours, returning to baseline after 24 hours. CONCLUSIONS: Corneal DCs respond differently in terms of shape and distribution during local and systemic inflammation. These features can serve as in vivo indicators in ocular and systemic diseases.


Subject(s)
Dendritic Cells/pathology , Inflammation/pathology , Keratitis/pathology , Animals , Bacterial Proteins/metabolism , CD11c Antigen/metabolism , Cell Count , Epithelium, Corneal/pathology , Female , Injections, Intraperitoneal , Lipopolysaccharides/pharmacology , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Oligodeoxyribonucleotides/pharmacology
9.
3D Print Med ; 5(1): 11, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31372773

ABSTRACT

BACKGROUND: Neurosurgical residents are finding it more difficult to obtain experience as the primary operator in aneurysm surgery. The present study aimed to replicate patient-derived cranial anatomy, pathology and human tissue properties relevant to cerebral aneurysm intervention through 3D printing and 3D print-driven casting techniques. The final simulator was designed to provide accurate simulation of a human head with a middle cerebral artery (MCA) aneurysm. METHODS: This study utilized living human and cadaver-derived medical imaging data including CT angiography and MRI scans. Computer-aided design (CAD) models and pre-existing computational 3D models were also incorporated in the development of the simulator. The design was based on including anatomical components vital to the surgery of MCA aneurysms while focusing on reproducibility, adaptability and functionality of the simulator. Various methods of 3D printing were utilized for the direct development of anatomical replicas and moulds for casting components that optimized the bio-mimicry and mechanical properties of human tissues. Synthetic materials including various types of silicone and ballistics gelatin were cast in these moulds. A novel technique utilizing water-soluble wax and silicone was used to establish hollow patient-derived cerebrovascular models. RESULTS: A patient-derived 3D aneurysm model was constructed for a MCA aneurysm. Multiple cerebral aneurysm models, patient-derived and CAD, were replicated as hollow high-fidelity models. The final assembled simulator integrated six anatomical components relevant to the treatment of cerebral aneurysms of the Circle of Willis in the left cerebral hemisphere. These included models of the cerebral vasculature, cranial nerves, brain, meninges, skull and skin. The cerebral circulation was modeled through the patient-derived vasculature within the brain model. Linear and volumetric measurements of specific physical modular components were repeated, averaged and compared to the original 3D meshes generated from the medical imaging data. Calculation of the concordance correlation coefficient (ρc: 90.2%-99.0%) and percentage difference (≤0.4%) confirmed the accuracy of the models. CONCLUSIONS: A multi-disciplinary approach involving 3D printing and casting techniques was used to successfully construct a multi-component cerebral aneurysm surgery simulator. Further study is planned to demonstrate the educational value of the proposed simulator for neurosurgery residents.

10.
Exp Eye Res ; 186: 107708, 2019 09.
Article in English | MEDLINE | ID: mdl-31242444

ABSTRACT

Previous studies have reported that topical exposure to the toll-like receptor (TLR) 9 ligand CpG-ODN causes widespread ocular inflammation, including retinal microglial activation and posterior segment inflammation. Here we sought to determine the effects of systemic exposure to CpG-ODN in the retina and whether this inflammatory response was altered with Cx3cr1 deficiency or hyperglycemia. Male non-diabetic Cx3cr1+/gfp and Cx3cr1gfp/gfp littermates (normoglycemic controls) and Cx3cr1+/gfpIns2Akitaand Cx3cr1gfp/gfpIns2Akita diabetic mice were injected intraperitoneally with 40 µg CpG-ODN. Immunofluorescence staining was performed 1 week later to assess the expression of MHC Class II and glial fibrillary acidic protein (GFAP), as well as to identify morphological changes to microglia and changes in retinal macrophage cell density. Systemic exposure to CpG-ODN induced the upregulated expression of both GFAP on retinal Müller cells and MHC Class II on the retinal vasculature. Additionally, there was an increased accumulation of macrophages in the subretinal space 1 week after exposure to systemic CpG-ODN as well as characteristic morphological changes to microglia indicative of an activated phenotype. These preliminary studies demonstrate that low-grade inflammatory changes were not enhanced in Cx3cr1-deficient or diabetic mice, indicating that the inflammatory response to systemic CpG-ODN in the retina is unaltered in the context of Cx3cr1 deficiency or prolonged hyperglycemia.


Subject(s)
Oligodeoxyribonucleotides/pharmacology , Retina/pathology , Analysis of Variance , Animals , Chemokine CX3CL1/deficiency , Diabetes Mellitus, Experimental , Disease Models, Animal , Ependymoglial Cells/metabolism , Glial Fibrillary Acidic Protein/metabolism , Histocompatibility Antigens Class II/metabolism , Hyperglycemia/physiopathology , Male , Mice , Retina/drug effects , Retina/metabolism
11.
Anat Sci Educ ; 12(1): 90-96, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30106512

ABSTRACT

The practical aspect of human developmental biology education is often limited to the observation and use of animal models to illustrate developmental anatomy. This is due in part to the difficulty of accessing human embryonic and fetal specimens, and the sensitivity inherent to presenting these specimens as teaching materials. This report presents a new approach using three-dimensional (3D) printed replicas of actual human materials in practical classes, thus allowing for the inclusion of accurate examples of human developmental anatomy in the educational context. A series of 3D prints have been produced from digital data collected by computed tomography (CT) imaging of an archived series of preserved human embryonic and fetal specimens. The final versions of 3D prints have been generated in a range of single or multiple materials to illustrate the progression of human development, including the development of internal anatomy. Furthermore, multiple copies of each replica have been printed for large group teaching. In addition to the educational benefit of examining accurate 3D replicas, this approach lessens the potential for adverse student reaction (due to cultural background or personal experience) to observing actual human embryonic/fetal anatomical specimens, and reduces the potential of damage or loss of original specimens. This approach, in combination with ongoing improvements in the management and analysis of digital data and advances in scanning technology, has enormous potential to allow embryology students access to both local and international collections of human gestational material. Anat Sci Educ 00: 000-000. © 2018 American Association of Anatomists.


Subject(s)
Embryology/education , Imaging, Three-Dimensional , Models, Anatomic , Printing, Three-Dimensional , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/diagnostic imaging , Fetus/anatomy & histology , Fetus/diagnostic imaging , Humans , Teaching , Tomography, X-Ray Computed
12.
Prog Retin Eye Res ; 70: 85-98, 2019 05.
Article in English | MEDLINE | ID: mdl-30552975

ABSTRACT

In the eye immune defenses must take place in a plethora of differing microenvironments ranging from the corneal and conjunctival epithelia facing the external environment to the pigmented connective tissue of the uveal tract containing smooth muscle, blood vessels and peripheral nerves to the innermost and highly protected neural retina. The extravascular environment of the neural retina, like the brain parenchyma, is stringently controlled to maintain conditions required for neural transmission. The unique physiological nature of the neural retina can be attributed to the blood retinal barriers (BRB) of the retinal vasculature and the retinal pigment epithelium, which both tightly regulate the transport of small molecules and restrict passage of cells and macromolecules from the circulation into the retina in a similar fashion to the blood brain barrier (BBB). The extracellular environment of the neural retina differs markedly from that of the highly vascular, loose connective tissue of the choroid, which lies outside the BRB. The choroid hosts a variety of immune cell types, including macrophages, dendritic cells (DCs) and mast cells. This is in marked contrast to the neural parenchyma of the retina, which is populated almost solely by microglia. This review will describe the current understanding of the distribution, phenotype and physiological role of ocular immune cells behind or inside the blood-retinal barriers and those in closely juxtaposed tissues outside the barrier. The nature and function of these immune cells can profoundly influence retinal homeostasis and lead to disordered immune function that can lead to vision loss.


Subject(s)
Choroid/immunology , Immune System/physiology , Retina/immunology , Animals , Biological Transport , Blood-Retinal Barrier , Choroid/blood supply , Humans , Microglia/physiology , Retinal Vessels/physiology
13.
Glia ; 67(5): 935-949, 2019 05.
Article in English | MEDLINE | ID: mdl-30585356

ABSTRACT

The central nervous system (CNS) is considered to be immune privileged, owing in part to the absence of major histocompatibility (MHC) class II+ cells in the healthy brain parenchyma. However, systemic inflammation can activate microglia to express MHC class II, suggesting that systemic inflammation may be sufficient to mature microglia into functional antigen presenting cells (APCs). We examined the effects of systemic lipopolysaccharide (LPS)-induced inflammation on the phenotype and function of putative APCs within the mouse brain parenchyma, as well as its supporting tissues-the choroid plexus and meninges. Microglia isolated from different regions of the brain demonstrated significant heterogeneity in their ability to present antigen to naïve OT-II CD4+ T cells following exposure to systemic LPS. Olfactory bulb microglia (but not cortical microglia) intimately interacted with T cells in vivo and stimulated T cell proliferation in vitro, albeit in the absence of co-stimulation. In contrast, myeloid cells within the choroid plexus and meninges were immunogenic and upregulated the co-stimulatory molecule CD80 following systemic inflammation. Dural APCs, which clustered around LYVE-1+ lymphatics, were more efficient at stimulating naïve T cell proliferation than choroid plexus APCs, suggesting that the dura may be an under-appreciated site for immune interactions. This study has highlighted the functional diversity of myeloid cells within the sub-compartments of the CNS and its supporting tissues. Furthermore, these findings demonstrate that systemic inflammation can mature selected microglia populations and choroid plexus/meningeal myeloid cells into functional APCs, which may contribute to the pathogenesis of neuroinflammation and neurodegenerative diseases.


Subject(s)
Antigen-Presenting Cells/metabolism , Brain/cytology , Meninges/cytology , Animals , Antigen-Presenting Cells/drug effects , Antigens, CD/genetics , Antigens, CD/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Imaging, Three-Dimensional , Lipopolysaccharides/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
14.
Nat Rev Neurosci ; 19(11): 655-671, 2018 11.
Article in English | MEDLINE | ID: mdl-30310148

ABSTRACT

Classically, the CNS is described as displaying immune privilege, as it shows attenuated responses to challenge by alloantigen. However, the CNS does show local inflammation in response to infection. Although pathogen access to the brain parenchyma and retina is generally restricted by physiological and immunological barriers, certain pathogens may breach these barriers. In the CNS, such pathogens may either cause devastating inflammation or benefit from immune privilege in the CNS, where they are largely protected from the peripheral immune system. Thus, some pathogens can persist as latent infections and later be reactivated. We review the consequences of immune privilege in the context of CNS infections and ask whether immune privilege may provide protection for certain pathogens and promote their latency.


Subject(s)
Brain/immunology , Central Nervous System Infections/immunology , Immune Privilege , Animals , Central Nervous System/immunology , Central Nervous System Infections/complications , Encephalitis/complications , Encephalitis/immunology , Humans , Microglia/immunology
15.
Am J Phys Anthropol ; 167(2): 400-406, 2018 10.
Article in English | MEDLINE | ID: mdl-30129183

ABSTRACT

OBJECTIVES: Rapid prototyping (RP) technology is becoming more affordable, faster, and is now capable of building models with a high resolution and accuracy. Due to technological limitations, 3D printing in biological anthropology has been mostly limited to museum displays and forensic reconstructions. In this study, we compared the accuracy of different 3D printers to establish whether RP can be used effectively to reproduce anthropological dental collections, potentially replacing access to oftentimes fragile and irreplaceable original material. METHODS: We digitized specimens from the Yuendumu collection of Australian Aboriginal dental casts using a high-resolution white-light scanning system and reproduced them using four different 3D printing technologies: stereolithography (SLA); fused deposition modeling (FDM); binder-jetting; and material-jetting. We compared the deviations between the original 3D surface models with 3D print scans using color maps generated from a 3D metric deviation analysis. RESULTS: The 3D printed models reproduced both the detail and discrete morphology of the scanned dental casts. The results of the metric deviation analysis demonstrate that all 3D print models were accurate, with only a few small areas of high deviations. The material-jetting and SLA printers were found to perform better than the other two printing machines. CONCLUSIONS: The quality of current commercial 3D printers has reached a good level of accuracy and detail reproduction. However, the costs and printing times limit its application to produce large sample numbers for use in most anthropological studies. Nonetheless, RP offers a viable option to preserve numerically constraint fragile skeletal and dental material in paleoanthropological collections.


Subject(s)
Models, Dental , Paleodontology/methods , Printing, Three-Dimensional , Humans , Stereolithography
16.
Biol Open ; 7(8)2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29970477

ABSTRACT

Serine/threonine kinase 35 (STK35) is a recently identified human kinase with an autophosphorylation function, linked functionally to actin stress fibers, cell cycle progression and survival. STK35 has previously been shown to be highly expressed in human testis, and we demonstrated its regulation by nuclear-localized importin α2 in HeLa cells. The present study identifies progressive expression from the STK35 locus of two coding mRNA isoforms and one long non-coding RNA (lncRNA) in mouse testis during spermatogenesis, indicating their tightly controlled synthesis. Additionally, lncRNA transcripts are increased by exposure to oxidative stress in mouse GC-1 germ cell line. STK35 knockout (KO) mice lacking all three RNAs are born at sub-Mendelian frequency, and adults manifest both male and female germline deficiency. KO males exhibit no or partial spermatogenesis in most testis tubule cross-sections; KO ovaries are smaller and contain fewer follicles. Eyes of KO mice display phenotypes ranging from gross deformity to mild goniodysgenesis or iridocorneal angle malformation, to overtly normal. These findings demonstrate the tight regulation of transcription from the STK35 locus and its central importance to fertility, eye development and cell responses to oxidative stress.

18.
Prog Neurobiol ; 156: 107-148, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28552391

ABSTRACT

Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.


Subject(s)
Allergy and Immunology , Brain , Meninges , Animals , Brain/anatomy & histology , Brain/diagnostic imaging , Brain/metabolism , Intravital Microscopy , Meninges/anatomy & histology , Meninges/diagnostic imaging , Meninges/metabolism , Mice
19.
Anat Rec (Hoboken) ; 300(8): 1391-1400, 2017 08.
Article in English | MEDLINE | ID: mdl-28371527

ABSTRACT

In marsupials that possess a retinal vasculature, the arterial and venous segments, down to the smallest calibre capillaries, have been shown to occur in pairs. This pattern is seen in the marsupial central nervous system (CNS) but not in other tissues in this group or in any tissues in eutherian mammals. The present study aimed to determine if the gray short-tailed opossum (Monodelphis domestica), a south American marsupial, possesses double retinal vessels. Secondly, we investigated the relationship between vessels and astrocytes and microglia, which are known to play pivotal roles in the blood retinal barrier and immune surveillance respectively. Eyes from M. domestica between 2 months and 33 months of age were examined by bright field and fluorescein angiography, resin histology, and wholemount immunostaining. Retinal vessels in this marsupial always occur in closely related pairs with the arteriolar limb usually on the vitread aspect. Branches penetrate the retina to form layers of paired capillaries as far as the outer nuclear layer. Dense networks of GFAP+ astrocytes enveloped the vitread aspect of vessels. No particularly strong association with blood vessels and ramified Iba1+ and Ib4+ microglia was noted. M. domestica possessed the unusual paired vasculature and capillary loops arrangement previously described in the marsupial CNS. These observations in a small laboratory-friendly marsupial open up new frontiers to investigate the factors that regulate paired blood vessel development and the functional significance of this arrangement when compared to the anastomotic pattern observed in the retina of eutherian mammals. Anat Rec, 300:1391-1400, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Astrocytes/cytology , Microglia/cytology , Monodelphis/anatomy & histology , Retinal Vessels/anatomy & histology , Animals , Fluorescein Angiography
20.
Pflugers Arch ; 469(3-4): 501-515, 2017 04.
Article in English | MEDLINE | ID: mdl-28233124

ABSTRACT

The eye is a complex sensory organ composed of a range of tissue types including epithelia, connective tissue, smooth muscle, vascular and neural tissue. While some components of the eye require a high level of transparency to allow light to pass through unobstructed, other tissues are characterized by their dense pigmentation, which functions to absorb light and thus control its passage through the ocular structures. Macrophages are present in all ocular tissues, from the cornea at the anterior surface through to the choroid/sclera at the posterior pole. This review will describe the current understanding of the distribution, phenotype, and physiological role of ocular macrophages, and provide a summary of evidence pertaining to their proposed role during pathological conditions.


Subject(s)
Eye/physiopathology , Macrophages/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...