Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
medRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746326

ABSTRACT

In behavioral-variant frontotemporal degeneration (bvFTD) and amyotrophic lateral sclerosis (ALS), the presence of secondary motor or cognitive-behavioral symptoms, respectively, is associated with shorter survival. However, factors influencing the risk and hazard of secondary symptom development remain largely unexplored. We performed a retrospective evaluation of the entire disease course of individuals with amyotrophic lateral sclerosis (n=172) and behavioral-variant frontotemporal degeneration (n=69). Only individuals who had neuropathological confirmation of a TDP-43 proteinopathy at autopsy or had a C9orf72 repeat expansion were included for analysis. We examined the odds and hazard of secondary symptom development and assessed whether they were modified by the presence of a C9orf72 repeat expansion or initial clinical syndrome. Binary logistic regression and Cox proportional hazard analyses revealed increased odds (OR=4.25 [1.97-9.14]; p<0.001) and an increased hazard (HR= 4.77 [2.33-9.79], p<0.001) for developing secondary symptoms in C9orf72 expansion carriers compared to noncarriers. Initial clinical syndrome (bvFTD or ALS), age at symptom onset, and sex were not associated with development of secondary motor or cognitive-behavioral symptoms. These findings highlight the need for clinician vigilance to detect the onset of secondary motor symptoms and cognitive-behavioral in patients carrying a C9orf72 repeat expansion, regardless of initial clinical syndrome, and may warrant dual referrals between cognitive and neuromuscular clinics in these cases.

2.
Alzheimers Dement ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747539

ABSTRACT

INTRODUCTION: Typical MRI measures of neurodegeneration have limited sensitivity in early disease stages. Diffusion MRI (dMRI) microstructural measures may allow for detection in preclinical stages. METHODS: Participants had dMRI and either beta-amyloid PET or plasma biomarkers of Alzheimer's pathology within 18 months of MRI. Microstructure was measured in portions of the medial temporal lobe (MTL) with high neurofibrillary tangle (NFT) burden based on a previously developed post mortem 3D-map. Regressions examined relationships between microstructure and markers of Alzheimer's pathology in preclinical disease and then across disease stages. RESULTS: There was higher isometric volume fraction in amyloid-positive compared to amyloid-negative cognitively unimpaired individuals in high tangle MTL regions. Similarly, plasma biomarkers and 18F-flortaucipir were associated with microstructural changes in preclinical disease. Additional microstructural effects were seen across disease stages. DISCUSSION: Combining a post mortem atlas of NFT pathology with microstructural measures allows for detection of neurodegeneration in preclinical Alzheimer's disease. Highlights Typical markers of neurodegeneration are not sensitive in preclinical Alzheimer's. dMRI measured microstructure in regions with high NFT. Microstructural changes occur in medial temporal regions in preclinical disease. Microstructural changes occur in other typical Alzheimer's regions in later stages. Combining post mortem pathology atlases with in vivo MRI is a powerful framework.

3.
Nat Rev Neurol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769202

ABSTRACT

Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.

4.
Neurocase ; : 1-9, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757415

ABSTRACT

We present a longitudinal description of a man with the TARDBP I383V variant of frontotemporal dementia (FTD). His progressive changes in behavior and language resulted in a diagnosis of the right temporal variant of FTD, also called the semantic behavioral variant (sbvFTD). We also present data from a small series of patients with the TARDBP I383V variant who were enrolled in a nationwide FTD research collaboration (ALLFTD). These data support slowly progressive loss of semantic function. While semantic dementia is infrequently considered genetic, the TARDBP I383V variant seems to be an exception. Longitudinal analyses in larger samples are warranted.

5.
Front Neurosci ; 18: 1353306, 2024.
Article in English | MEDLINE | ID: mdl-38567286

ABSTRACT

Introduction: Multimodal evidence indicates Alzheimer's disease (AD) is characterized by early white matter (WM) changes that precede overt cognitive impairment. WM changes have overwhelmingly been investigated in typical, amnestic mild cognitive impairment and AD; fewer studies have addressed WM change in atypical, non-amnestic syndromes. We hypothesized each non-amnestic AD syndrome would exhibit WM differences from amnestic and other non-amnestic syndromes. Materials and methods: Participants included 45 cognitively normal (CN) individuals; 41 amnestic AD patients; and 67 patients with non-amnestic AD syndromes including logopenic-variant primary progressive aphasia (lvPPA, n = 32), posterior cortical atrophy (PCA, n = 17), behavioral variant AD (bvAD, n = 10), and corticobasal syndrome (CBS, n = 8). All had T1-weighted MRI and 30-direction diffusion-weighted imaging (DWI). We performed whole-brain deterministic tractography between 148 cortical and subcortical regions; connection strength was quantified by tractwise mean generalized fractional anisotropy. Regression models assessed effects of group and phenotype as well as associations with grey matter volume. Topological analyses assessed differences in persistent homology (numbers of graph components and cycles). Additionally, we tested associations of topological metrics with global cognition, disease duration, and DWI microstructural metrics. Results: Both amnestic and non-amnestic patients exhibited lower WM connection strength than CN participants in corpus callosum, cingulum, and inferior and superior longitudinal fasciculi. Overall, non-amnestic patients had more WM disease than amnestic patients. LvPPA patients had left-lateralized WM degeneration; PCA patients had reductions in connections to bilateral posterior parietal, occipital, and temporal areas. Topological analysis showed the non-amnestic but not the amnestic group had more connected components than controls, indicating persistently lower connectivity. Longer disease duration and cognitive impairment were associated with more connected components and fewer cycles in individuals' brain graphs. Discussion: We have previously reported syndromic differences in GM degeneration and tau accumulation between AD syndromes; here we find corresponding differences in WM tracts connecting syndrome-specific epicenters. Determining the reasons for selective WM degeneration in non-amnestic AD is a research priority that will require integration of knowledge from neuroimaging, biomarker, autopsy, and functional genetic studies. Furthermore, longitudinal studies to determine the chronology of WM vs. GM degeneration will be key to assessing evidence for WM-mediated tau spread.

6.
Article in English | MEDLINE | ID: mdl-38591193

ABSTRACT

OBJECTIVE: Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous neurodegenerative condition featuring variable degrees of motor and cognitive impairment. We assessed the impact of specific, empirically derived occupational skills and requirements on cognitive and motor functioning in ALS. METHODS: Individuals with ALS (n = 150) were recruited from the University of Pennsylvania's Comprehensive ALS Clinic. The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) measured cognition, and the Penn Upper Motor Neuron (PUMNS) and ALS Functional Rating Scales (ALSFRS-R) measured motor symptoms. We derived 17 factors representing distinct occupational skills and requirements from the Occupational Information Network (O*NET), which were related to cognitive and motor scores using multiple linear regression. RESULTS: Occupational roles involving greater reasoning ability (ß = 2.12, p < .05), social ability (ß = 1.73, p < .05), analytic skills, (ß = 3.12, p < .01) and humanities knowledge (ß = 1.83, p<.01) were associated with better performance on the ECAS, while jobs involving more exposure to environmental hazards (ß=-2.57, p < .01) and technical skills (ß=-2.16, p<.01) were associated with lower ECAS scores. Jobs requiring more precision skills (ß = 1.91, p < .05) were associated with greater motor dysfunction on the PUMNS. CONCLUSIONS: Occupational histories involving more cognitively complex skills and activities were related to preserved cognitive functioning in ALS consistent with the cognitive reserve hypothesis, while jobs with greater exposure to environmental hazards and technical demands were linked to poorer cognitive functioning. Jobs involving more repetitive movements were associated with worse motor functioning, possibly due to overuse. Occupational history provides insight into protective and risk factors for variable degrees of cognitive and motor dysfunction in ALS.

7.
bioRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38644997

ABSTRACT

Behavioral variant frontotemporal dementia (bvFTD) is a clinical syndrome primarily caused by either tau (bvFTD-tau) or TDP-43 (bvFTD-TDP) proteinopathies. We previously found lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD is understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topologic order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation. Here, we tested this hypothesis in a frontal cortical gradient consisting of five cytoarchitectonic types (i.e., periallocortex, agranular mesocortex, dysgranular mesocortex, eulaminate-I isocortex, eulaminate-II isocortex) spanning anterior cingulate, paracingulate, orbitofrontal, and mid-frontal gyri in bvFTD-tau (n=27), bvFTD-TDP (n=47), and healthy controls (HC; n=32). We immunostained all tissue for total neurons (NeuN; neuronal-nuclear protein) and pyramidal neurons (SMI32; non-phosphorylated neurofilament) and digitally quantified NeuN-immunoreactivity (ir) and SMI32-ir in supragranular II-III, infragranular V-VI, and all I-VI layers in each cytoarchitectonic type. We used linear mixed-effects models adjusted for demographic and biologic variables to compare SMI32-ir between groups and examine relationships with the cortical gradient, long-range pathways, and clinical symptoms. We found regional and laminar distributions of SMI32-ir expected for HC, validating our measures within the cortical gradient framework. While SMI32-ir loss was not related to the cortical gradient in bvFTD-TDP, SMI32-ir progressively decreased along the cortical gradient of bvFTD-tau and included greater SMI32-ir loss in supragranular eulaminate-II isocortex in bvFTD-tau vs bvFTD-TDP ( p =0.039). In a structural model for long-range laminar connectivity between infragranular mesocortex and supragranular isocortex, we found a larger laminar ratio of mesocortex-to-isocortex SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.019), suggesting select long-projecting pathways may contribute to isocortical-predominant degeneration in bvFTD-tau. In cytoarchitectonic types with the highest NeuN-ir, we found lower SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.047), suggesting pyramidal neurodegeneration may occur earlier in bvFTD-tau. Lastly, we found that reduced SMI32-ir related to behavioral severity and frontal-mediated letter fluency, not temporal-mediated confrontation naming, demonstrating the clinical relevance and specificity of frontal pyramidal neurodegeneration to bvFTD-related symptoms. Our data suggest loss of neurofilament-rich pyramidal neurons is a clinically relevant feature of bvFTD that selectively worsens along a frontal cortical gradient in bvFTD-tau, not bvFTD-TDP. Therefore, tau-mediated degeneration may preferentially involve pyramidal-rich layers that connect more distant cytoarchitectonic types. Moreover, the hierarchical arrangement of cytoarchitecture along cortical gradients may be an important neuroanatomical framework for identifying which types of cells and pathways are differentially involved between proteinopathies.

8.
Res Sq ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585969

ABSTRACT

The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics (> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39 noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.

9.
Alzheimers Dement ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644682

ABSTRACT

INTRODUCTION: We investigate pathological correlates of plasma phosphorylated tau 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) across a clinically diverse spectrum of neurodegenerative disease, including normal cognition (NormCog) and impaired cognition (ImpCog). METHODS: Participants were NormCog (n = 132) and ImpCog (n = 461), with confirmed ß-amyloid (Aß+/-) status (cerebrospinal fluid, positron emission tomography, autopsy) and single molecule array plasma measurements. Logistic regression and receiver operating characteristic (ROC) area under the curve (AUC) tested how combining plasma analytes discriminated Aß+ from Aß-. Survival analyses tested time to clinical dementia rating (global CDR) progression. RESULTS: Multivariable models (p-tau+GFAP+NfL) had the best performance to detect Aß+ in NormCog (ROCAUC = 0.87) and ImpCog (ROCAUC = 0.87). Survival analyses demonstrated that higher NfL best predicted faster CDR progression for both Aß+ (hazard ratio [HR] = 2.94; p = 8.1e-06) and Aß- individuals (HR = 3.11; p = 2.6e-09). DISCUSSION: Combining plasma biomarkers can optimize detection of Alzheimer's disease (AD) pathology across cognitively normal and clinically diverse neurodegenerative disease. HIGHLIGHTS: Participants were clinically heterogeneous, with autopsy- or biomarker-confirmed Aß. Combining plasma p-tau181, GFAP, and NfL improved diagnostic accuracy for Aß status. Diagnosis by plasma biomarkers is more accurate in amnestic AD than nonamnestic AD. Plasma analytes show independent associations with tau PET and post mortem Aß/tau. Plasma NfL predicted longitudinal cognitive decline in both Aß+ and Aß- individuals.

10.
Alzheimers Dement ; 20(4): 2707-2718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400524

ABSTRACT

INTRODUCTION: Individuals in socioeconomically disadvantaged neighborhoods exhibit increased risk for impaired cognitive function. Whether this association relates to the major dementia-related neuropathologies is unknown. METHODS: This cross-sectional study included 469 autopsy cases from 2011 to 2023. The relationships between neighborhood disadvantage measured by Area Deprivation Index (ADI) percentiles categorized into tertiles, cognition evaluated by the last Mini-Mental State Examination (MMSE) scores before death, and 10 dementia-associated proteinopathies and cerebrovascular disease were assessed using regression analyses. RESULTS: Higher ADI was significantly associated with lower MMSE score. This was mitigated by increasing years of education. ADI was not associated with an increase in dementia-associated neuropathologic change. Moreover, the significant association between ADI and cognition remained even after controlling for changes in major dementia-associated proteinopathies or cerebrovascular disease. DISCUSSION: Neighborhood disadvantage appears to be associated with decreased cognitive reserve. This association is modified by education but is independent of the major dementia-associated neuropathologies.


Subject(s)
Cerebrovascular Disorders , Cognitive Reserve , Dementia , Proteostasis Deficiencies , Humans , Cross-Sectional Studies , Neighborhood Characteristics
11.
Ann Clin Transl Neurol ; 11(3): 673-685, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263854

ABSTRACT

OBJECTIVE: Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia. METHODS: We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses. Multiple tau monoclonal antibodies were used to detect early (AT8, MC1) and mature (TauC3) epitopes of tangle progression. We used linear/logistic regression to compare groups and test the association between pathologies and clinical features. RESULTS: There were lower levels of tau pathology (ß = 1.86-2.96, p < 0.001) across all tau antibodies in the co-pathology group compared to the pure Alzheimer's pathology group. Among individuals with alpha-synucleinopathy, higher alpha-synuclein was associated with greater early tau (AT8 ß = 1.37, p < 0.001; MC1 ß = 1.2, p < 0.001) but not mature tau (TauC3 p = 0.18), whereas mature tau was associated with beta-amyloid (ß = 0.21, p = 0.01). Finally, lower tau, particularly TauC3 pathology, was associated with lower frequency of both core clinical features and categorical clinical diagnosis of dementia with Lewy bodies. INTERPRETATION: Mature tau may be more closely related to beta-amyloidosis than alpha-synucleinopathy, and pathophysiological processes of tangle maturation may influence the clinical features of dementia in mixed Lewy-Alzheimer's pathology.


Subject(s)
Alzheimer Disease , Parkinson Disease , Synucleinopathies , Humans , Alzheimer Disease/pathology , alpha-Synuclein , Lewy Bodies/pathology , Synucleinopathies/pathology , Parkinson Disease/pathology , tau Proteins , Amyloid beta-Peptides , Epitopes
12.
Neurology ; 102(2): e207926, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165329

ABSTRACT

BACKGROUND AND OBJECTIVES: Clinical trials developing therapeutics for frontotemporal degeneration (FTD) focus on pathogenic variant carriers at preclinical stages. Objective, quantitative clinical assessment tools are needed to track stability and delayed disease onset. Natural speech can serve as an accessible, cost-effective assessment tool. We aimed to identify early changes in the natural speech of FTD pathogenic variant carriers before they become symptomatic. METHODS: In this cohort study, speech samples of picture descriptions were collected longitudinally from healthy participants in observational studies at the University of Pennsylvania and Columbia University between 2007 and 2020. Participants were asymptomatic but at risk for familial FTD. Status as "carrier" or "noncarrier" was based on screening for known pathogenic variants in the participant's family. Thirty previously validated digital speech measures derived from automatic speech processing pipelines were selected a priori based on previous studies in patients with FTD and compared between asymptomatic carriers and noncarriers cross-sectionally and longitudinally. RESULTS: A total of 105 participants, all asymptomatic, included 41 carriers: 12 men [30%], mean age 43 ± 13 years; education, 16 ± 2 years; MMSE 29 ± 1; and 64 noncarriers: 27 men [42%]; mean age, 48 ± 14 years; education, 15 ± 3 years; MMSE 29 ± 1. We identified 4 speech measures that differed between carriers and noncarriers at baseline: mean speech segment duration (mean difference -0.28 seconds, 95% CI -0.55 to -0.02, p = 0.04); word frequency (mean difference 0.07, 95% CI 0.008-0.14, p = 0.03); word ambiguity (mean difference 0.02, 95% CI 0.0008-0.05, p = 0.04); and interjection count per 100 words (mean difference 0.33, 95% CI 0.07-0.59, p = 0.01). Three speech measures deteriorated over time in carriers only: particle count per 100 words per month (ß = -0.02, 95% CI -0.03 to -0.004, p = 0.009); total narrative production time in seconds per month (ß = -0.24, 95% CI -0.37 to -0.12, p < 0.001); and total number of words per month (ß = -0.48, 95% CI -0.78 to -0.19, p = 0.002) including in 3 carriers who later converted to symptomatic disease. DISCUSSION: Using automatic processing pipelines, we identified early changes in the natural speech of FTD pathogenic variant carriers in the presymptomatic stage. These findings highlight the potential utility of natural speech as a digital clinical outcome assessment tool in FTD, where objective and quantifiable measures for abnormal behavior and language are lacking.


Subject(s)
Frontotemporal Dementia , Adult , Humans , Male , Middle Aged , Atrophy , Cohort Studies , Educational Status , Frontotemporal Dementia/genetics , Speech , Female , Observational Studies as Topic
13.
Parkinsonism Relat Disord ; 120: 105983, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183891

ABSTRACT

BACKGROUND: Impairment in goal-directed behavior (GDB) contributes to apathy, a prevalent syndrome in Parkinson's disease (PD). The Philadelphia Apathy Computerized Task (PACT) is a performance-based measure of GDB that may be less confounded by reduced patient insight, cognitive impairment, and care partner burnout. OBJECTIVE: To examine how the PACT is related to patient function and care partner burden. METHODS: PD patients with normal cognition (n = 19) or mild cognitive impairment (n = 14) and their care partners were recruited. Participants completed the PACT, a computerized paradigm consisting of subtasks specific to each component of GDB: initiation, motivation, and planning. Care partners completed the Zarit Burden Interview (ZBI) and the Penn Parkinson's Daily Activities Questionnaire (PDAQ-15). The associations between mean latency on each PACT subtask and ZBI and PDAQ-15 scores, respectively, were tested using Spearman's rank correlation coefficients. Significant associations were further delineated using multivariate regression with the following covariates: age, years of education, MoCA score, daily levodopa equivalency dose, UPDRS Part III score, and GDS-15 score. RESULTS: Worse performance on the planning subtask of the PACT related to higher ZBI scores and lower PDAQ-15 scores when adjusting for covariates. Decreased initiation was associated with higher ZBI and decreased motivation with lower PDAQ-15. CONCLUSIONS: Specific components of the PACT are related to patient and care partner outcomes in PD. The main advantage of this measure is to minimize the confounds of poor insight and care partner distress. We propose future research directions to refine the PACT for potential use in research and clinical practice.


Subject(s)
Apathy , Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/complications , Caregivers/psychology , Activities of Daily Living , Cognitive Dysfunction/complications
14.
J Neurosci ; 44(6)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38050082

ABSTRACT

Mixed pathologies are common in neurodegenerative disease; however, antemortem imaging rarely captures copathologic effects on brain atrophy due to a lack of validated biomarkers for non-Alzheimer's pathologies. We leveraged a dataset comprising antemortem MRI and postmortem histopathology to assess polypathologic associations with atrophy in a clinically heterogeneous sample of 125 human dementia patients (41 female, 84 male) with T1-weighted MRI ≤ 5 years before death and postmortem ordinal ratings of amyloid-[Formula: see text], tau, TDP-43, and [Formula: see text]-synuclein. Regional volumes were related to pathology using linear mixed-effects models; approximately 25% of data were held out for testing. We contrasted a polypathologic model comprising independent factors for each proteinopathy with two alternatives: a model that attributed atrophy entirely to the protein(s) associated with the patient's primary diagnosis and a protein-agnostic model based on the sum of ordinal scores for all pathology types. Model fits were evaluated using log-likelihood and correlations between observed and fitted volume scores. Additionally, we performed exploratory analyses relating atrophy to gliosis, neuronal loss, and angiopathy. The polypathologic model provided superior fits in the training and testing datasets. Tau, TDP-43, and [Formula: see text]-synuclein burden were inversely associated with regional volumes, but amyloid-[Formula: see text] was not. Gliosis and neuronal loss explained residual variance in and mediated the effects of tau, TDP-43, and [Formula: see text]-synuclein on atrophy. Regional brain atrophy reflects not only the primary molecular pathology but also co-occurring proteinopathies; inflammatory immune responses may independently contribute to degeneration. Our findings underscore the importance of antemortem biomarkers for detecting mixed pathology.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Male , Female , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Gray Matter/pathology , tau Proteins/metabolism , Gliosis/pathology , Atrophy/pathology , Amyloid , Synucleins , DNA-Binding Proteins/metabolism , Biomarkers , Alzheimer Disease/pathology
15.
Alzheimers Dement ; 20(3): 1586-1600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050662

ABSTRACT

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Humans , Alzheimer Disease/pathology , tau Proteins , Neurofibrillary Tangles/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides
16.
Article in English | MEDLINE | ID: mdl-38050971

ABSTRACT

OBJECTIVE: To evaluate automated digital speech measures, derived from spontaneous speech (picture descriptions), in assessing bulbar motor impairments in patients with ALS-FTD spectrum disorders (ALS-FTSD). METHODS: Automated vowel algorithms were employed to extract two vowel acoustic measures: vowel space area (VSA), and mean second formant slope (F2 slope). Vowel measures were compared between ALS with and without clinical bulbar symptoms (ALS + bulbar (n = 49, ALSFRS-r bulbar subscore: x¯ = 9.8 (SD = 1.7)) vs. ALS-nonbulbar (n = 23), behavioral variant frontotemporal dementia (bvFTD, n = 25) without a motor syndrome, and healthy controls (HC, n = 32). Correlations with bulbar motor clinical scales, perceived listener effort, and MRI cortical thickness of the orobuccal primary motor cortex (oral PMC) were examined. We compared vowel measures to speaking rate, a conventional metric for assessing bulbar dysfunction. RESULTS: ALS + bulbar had significantly reduced VSA and F2 slope than ALS-nonbulbar (|d|=0.94 and |d|=1.04, respectively), bvFTD (|d|=0.89 and |d|=1.47), and HC (|d|=0.73 and |d|=0.99). These reductions correlated with worse bulbar clinical scores (VSA: R = 0.33, p = 0.043; F2 slope: R = 0.38, p = 0.011), greater listener effort (VSA: R=-0.43, p = 0.041; F2 slope: p > 0.05), and cortical thinning in oral PMC (F2 slope: ß = 0.0026, p = 0.017). Vowel measures demonstrated greater sensitivity and specificity for bulbar impairment than speaking rate, while showing independence from cognitive and respiratory impairments. CONCLUSION: Automatic vowel measures are easily derived from a brief spontaneous speech sample, are sensitive to mild-moderate stage of bulbar disease in ALS-FTSD, and may present better sensitivity to bulbar impairment compared to traditional assessments such as speaking rate.


Subject(s)
Amyotrophic Lateral Sclerosis , Dystonic Disorders , Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/diagnostic imaging , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnosis , Speech , Magnetic Resonance Imaging
17.
J Neurol Neurosurg Psychiatry ; 95(4): 316-324, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-37827570

ABSTRACT

BACKGROUND: Cognitive and behavioural dysfunction may occur in people with motor neuron disease (MND), with some studies suggesting an association with the C9ORF72 repeat expansion. Their onset and progression, however, is poorly understood. We explored how cognition and behaviour change over time, and whether demographic, clinical and genetic factors impact these changes. METHODS: Participants with MND were recruited through the Phenotype-Genotype-Biomarker study. Every 3-6 months, the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was used to assess amyotrophic lateral sclerosis (ALS) specific (executive functioning, verbal fluency, language) and ALS non-specific (memory, visuospatial) functions. Informants reported on behaviour symptoms via semi-structured interview. RESULTS: Participants with neuropsychological data at ≥3 visits were included (n=237, mean age=59, 60% male), of which 18 (8%) were C9ORF72 positive. Baseline cognitive impairment was apparent in 18 (8%), typically in ALS specific domains, and associated with lower education, but not C9ORF72 status. Cognition, on average, remained stable over time, with two exceptions: (1) C9ORF72 carriers declined in all ECAS domains, (2) 8%-9% of participants with baseline cognitive impairment further declined, primarily in the ALS non-specific domain, which was associated with less education. Behavioural symptoms were uncommon. CONCLUSIONS: In this study, cognitive dysfunction was less common than previously reported and remained stable over time for most. However, cognition declines longitudinally in a small subset, which is not entirely related to C9ORF72 status. Our findings raise questions about the timing of cognitive impairment in MND, and whether it arises during early clinically manifest disease or even prior to motor manifestations.


Subject(s)
Amyotrophic Lateral Sclerosis , Cognitive Dysfunction , Motor Neuron Disease , Humans , Male , Middle Aged , Female , Amyotrophic Lateral Sclerosis/diagnosis , C9orf72 Protein/genetics , Motor Neuron Disease/genetics , Motor Neuron Disease/complications , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Cognition/physiology , Neuropsychological Tests
18.
Transl Neurodegener ; 12(1): 57, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062485

ABSTRACT

BACKGROUND: TDP-43 proteinopathies represent a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. METHODS: We used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. RESULTS: SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 types B, E and C. In contrast, the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. CONCLUSIONS: Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Neurodegenerative Diseases/pathology , Brain/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Atrophy/genetics , Atrophy/complications , Atrophy/pathology
19.
Article in English | MEDLINE | ID: mdl-38083460

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects over 10 million people worldwide. Brain atrophy and microstructural abnormalities tend to be more subtle in PD than in other age-related conditions such as Alzheimer's disease, so there is interest in how well machine learning methods can detect PD in radiological scans. Deep learning models based on convolutional neural networks (CNNs) can automatically distil diagnostically useful features from raw MRI scans, but most CNN-based deep learning models have only been tested on T1-weighted brain MRI. Here we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models for PD classification. Our evaluations used data from 3 separate cohorts - from Chang Gung University, the University of Pennsylvania, and the PPMI dataset. We trained CNNs on various combinations of these cohorts to find the best predictive model. Although tests on more diverse data are warranted, deep-learned models from dMRI show promise for PD classification.Clinical Relevance- This study supports the use of diffusion-weighted images as an alternative to anatomical images for AI-based detection of Parkinson's disease.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Diffusion Magnetic Resonance Imaging
20.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964373

ABSTRACT

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Cross-Sectional Studies , Magnetic Resonance Imaging , Cerebellum , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...