Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Neurol ; 92(5): 807-818, 2022 11.
Article in English | MEDLINE | ID: mdl-35877814

ABSTRACT

OBJECTIVE: Plasma phosphorylated tau (p-tau181 ) is reliably elevated in Alzheimer's disease (AD), but less explored is its specificity relative to other neurodegenerative conditions. Here, we find novel evidence that plasma p-tau181 is elevated in amyotrophic lateral sclerosis (ALS), a neurodegenerative condition typically lacking tau pathology. We performed a detailed evaluation to identify the clinical correlates of elevated p-tau181 in ALS. METHODS: Patients were clinically or pathologically diagnosed with ALS (n = 130) or AD (n = 79), or were healthy non-impaired controls (n = 26). Receiver operating characteristic (ROC) curves were analyzed and area under the curve (AUC) was used to discriminate AD from ALS. Within ALS, Mann-Whitney-Wilcoxon tests compared analytes by presence/absence of upper motor neuron and lower motor neuron (LMN) signs. Spearman correlations tested associations between plasma p-tau181 and postmortem neuron loss. RESULTS: A Wilcoxon test showed plasma p-tau181 was higher in ALS than controls (W = 2,600, p = 0.000015), and ROC analyses showed plasma p-tau181 poorly discriminated AD and ALS (AUC = 0.60). In ALS, elevated plasma p-tau181 was associated with LMN signs in cervical (W = 827, p = 0.0072), thoracic (W = 469, p = 0.00025), and lumbosacral regions (W = 851, p = 0.0000029). In support of LMN findings, plasma p-tau181 was associated with neuron loss in the spinal cord (rho = 0.46, p = 0.017), but not in the motor cortex (p = 0.41). Cerebrospinal spinal fluid p-tau181 and plasma neurofilament light chain were included as reference analytes, and demonstrate specificity of findings. INTERPRETATION: We found strong evidence that plasma p-tau181 is elevated in ALS and may be a novel marker specific to LMN dysfunction. ANN NEUROL 2022;92:807-818.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , tau Proteins , Alzheimer Disease/pathology , ROC Curve , Area Under Curve , Biomarkers , Nerve Degeneration
2.
Ann Neurol ; 85(5): 630-643, 2019 05.
Article in English | MEDLINE | ID: mdl-30851133

ABSTRACT

OBJECTIVE: To measure postmortem burden of frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) or tau (FTLD-Tau) proteinopathy across hemispheres in primary progressive aphasia (PPA) using digital histopathology and to identify clinicopathological correlates of these distinct proteinopathies. METHODS: In an autopsy cohort of PPA (FTLD-TDP = 13, FTLD-Tau = 14), we analyzed laterality and regional distribution of postmortem pathology, quantified using a validated digital histopathological approach, in available brain tissue from up to 8 cortical regions bilaterally. We related digital pathology to antemortem structural neuroimaging and specific clinical language features. RESULTS: Postmortem cortical pathology was left-lateralized in both FTLD-TDP (beta = -0.15, standard error [SE] = 0.05, p = 0.007) and FTLD-Tau (beta = -0.09, SE = 0.04, p = 0.015), but the degree of lateralization decreased with greater overall dementia severity before death (beta = -8.18, SE = 3.22, p = 0.015). Among 5 core pathology regions sampled, we found greatest pathology in left orbitofrontal cortex (OFC) in FTLD-TDP, which was greater than in FTLD-Tau (F = 47.07, df = 1,17, p < 0.001), and in left midfrontal cortex (MFC) in FTLD-Tau, which was greater than in FTLD-TDP (F = 19.34, df = 1,16, p < 0.001). Postmortem pathology was inversely associated with antemortem magnetic resonance imaging cortical thickness (beta = -0.04, SE = 0.01, p = 0.007) in regions matching autopsy sampling. Irrespective of PPA syndromic variant, single-word comprehension impairment was associated with greater left OFC pathology (t = -3.72, df = 10.72, p = 0.004) and nonfluent speech with greater left MFC pathology (t = -3.62, df = 12.00, p = 0.004) among the 5 core pathology regions. INTERPRETATION: In PPA, FTLD-TDP and FTLD-Tau have divergent anatomic distributions of left-lateralized postmortem pathology that relate to antemortem structural imaging and distinct language deficits. Although other brain regions may be implicated in neural networks supporting these complex language measures, our observations may eventually help to improve antemortem diagnosis of neuropathology in PPA. Ann Neurol 2019;85:630-643.


Subject(s)
Aphasia, Primary Progressive/metabolism , Aphasia, Primary Progressive/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , DNA-Binding Proteins/metabolism , tau Proteins/metabolism , Aged , Female , Humans , Male , Middle Aged
3.
Ann Neurol ; 82(2): 247-258, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28719018

ABSTRACT

OBJECTIVE: To test the hypotheses that (1) antemortem cerebrospinal fluid (CSF) tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration (FTLD) and (2) tauopathy patients have higher phosphorylated-tau levels compared to transactivation response element DNA-binding protein 43 (TDP-43) proteinopathy patients while accounting for Alzheimer's disease (AD) copathology. METHODS: Patients had autopsy-confirmed FTLD with tauopathy (n = 31), TDP-43 proteinopathy (n = 49), or AD (n = 26) with antemortem CSF. CSF tau levels were compared between groups and correlated with digital histology measurement of postmortem tau pathology averaged from three cerebral regions (angular gyrus, mid-frontal cortex, and anterior cingulate gyrus). Multivariate linear regression tested the association of ante mortem CSF tau levels with postmortem tau pathology adjusting for demographics. RESULTS: Multivariate regression found an independent association of ante mortem CSF phosphorylated tau levels with postmortem cerebral tau pathology in FTLD (Beta = 1.3; 95% confidence interval = 0.2-2.4; p < 0.02). After excluding patients with coincident AD-associated tau pathology accompanying sporadic FTLD, we found lower CSF phosphorylated tau levels in the TDP-43 group (median = 7.4pg/ml; interquartile range [IQR] = 6.0, 12.3; n = 26) compared to the tauopathy group (median = 12.5pg/ml; IQR = 10.7, 15.0; n = 23; Z = 2.6; p < 0.01). INTERPRETATION: CSF phosphorylated-tau levels are positively associated with cerebral tau burden in FTLD. In vivo detection of AD copathology in sporadic FTLD patients may help stratify clinical cohorts with pure neuropathology in which low CSF phosphorylated-tau levels may have diagnostic utility to distinguish TDP-43 proteinopathy from tauopathy. Autopsy-confirmed samples are critical for FTLD biomarker development and validation. Ann Neurol 2017;82:247-258.


Subject(s)
Frontotemporal Lobar Degeneration/cerebrospinal fluid , Frontotemporal Lobar Degeneration/pathology , TDP-43 Proteinopathies/pathology , Tauopathies/pathology , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/pathology , Biomarkers/cerebrospinal fluid , Case-Control Studies , Female , Frontal Lobe/pathology , Frontotemporal Lobar Degeneration/complications , Gyrus Cinguli/pathology , Humans , Male , Middle Aged , Parietal Lobe/pathology , Phosphorylation , Tauopathies/cerebrospinal fluid
4.
Ann Neurol ; 79(2): 272-87, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26583316

ABSTRACT

OBJECTIVE: To characterize sequential patterns of regional neuropathology and clinical symptoms in a well-characterized cohort of 21 patients with autopsy-confirmed Pick disease. METHODS: Detailed neuropathological examination using 70µm and traditional 6µm sections was performed using thioflavin-S staining and immunohistochemistry for phosphorylated tau, 3R and 4R tau isoforms, ubiquitin, and C-terminally truncated tau. Patterns of regional tau deposition were correlated with clinical data. In a subset of cases (n = 5), converging evidence was obtained using antemortem neuroimaging measures of gray and white matter integrity. RESULTS: Four sequential patterns of pathological tau deposition were identified starting in frontotemporal limbic/paralimbic and neocortical regions (phase I). Sequential involvement was seen in subcortical structures, including basal ganglia, locus coeruleus, and raphe nuclei (phase II), followed by primary motor cortex and precerebellar nuclei (phase III) and finally visual cortex in the most severe (phase IV) cases. Behavioral variant frontotemporal dementia was the predominant clinical phenotype (18 of 21), but all patients eventually developed a social comportment disorder. Pathological tau phases reflected the evolution of clinical symptoms and degeneration on serial antemortem neuroimaging, directly correlated with disease duration and inversely correlated with brain weight at autopsy. The majority of neuronal and glial tau inclusions were 3R tau-positive and 4R tau-negative in sporadic cases. There was a relative abundance of mature tau pathology markers in frontotemporal limbic/paralimbic regions compared to neocortical regions. INTERPRETATION: Pick disease tau neuropathology may originate in limbic/paralimbic cortices. The patterns of tau pathology observed here provide novel insights into the natural history and biology of tau-mediated neurodegeneration.


Subject(s)
Cerebral Cortex/pathology , Limbic System/pathology , Pick Disease of the Brain/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Benzothiazoles , Female , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/physiopathology , Staining and Labeling , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL