Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
J Mol Med (Berl) ; 102(1): 95-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37987775

ABSTRACT

Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.


Subject(s)
Congenital Bone Marrow Failure Syndromes , Diabetes Mellitus , Diabetic Cardiomyopathies , Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Muscular Diseases , Humans , Male , Mice , Animals , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/therapy , Genetic Therapy , RNA, Messenger/genetics
2.
Am J Physiol Heart Circ Physiol ; 326(1): H1-H24, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37921664

ABSTRACT

Cardiovascular magnetic resonance (CMR) imaging has become an essential technique for the assessment of cardiac function and morphology, and is now routinely used to monitor disease progression and intervention efficacy in the clinic. Cardiac fibrosis is a common characteristic of numerous cardiovascular diseases and often precedes cardiac dysfunction and heart failure. Hence, the detection of cardiac fibrosis is important for both early diagnosis and the provision of guidance for interventions/therapies. Experimental mouse models with genetically and/or surgically induced disease have been widely used to understand mechanisms underlying cardiac fibrosis and to assess new treatment strategies. Improving the appropriate applications of CMR to mouse studies of cardiac fibrosis has the potential to generate new knowledge, and more accurately examine the safety and efficacy of antifibrotic therapies. In this review, we provide 1) a brief overview of different types of cardiac fibrosis, 2) general background on magnetic resonance imaging (MRI), 3) a summary of different CMR techniques used in mice for the assessment of cardiac fibrosis including experimental and technical considerations (contrast agents and pulse sequences), and 4) provide an overview of mouse studies that have serially monitored cardiac fibrosis during disease progression and/or therapeutic interventions. Clinically established CMR protocols have advanced mouse CMR for the detection of cardiac fibrosis, and there is hope that discovery studies in mice will identify new antifibrotic therapies for patients, highlighting the value of both reverse translation and bench-to-bedside research.


Subject(s)
Cardiomyopathies , Heart , Humans , Animals , Mice , Magnetic Resonance Imaging/methods , Fibrosis , Disease Progression
3.
Physiol Rep ; 11(23): e15869, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38054572

ABSTRACT

Long ncRNAs (lncRNAs) have been shown to play a biological and physiological role in various tissues including the heart. We and others have previously established that the lncRNA Oip5os1 (1700020I14Rik, OIP5-AS1, Cyrano) is enriched in striated muscles, and its deletion in mice leads to defects in both skeletal and cardiac muscle function. In the present study, we investigated the impact of global Oip5os1 deletion on cardiac function in the setting of streptozotocin (STZ)-induced diabetes. Specifically, we studied male WT and KO mice with or without diabetes for 24 weeks, and phenotyped animals for metabolic and cardiac endpoints. Independent of genotype, diabetes was associated with left ventricular diastolic dysfunction based on a fall in E'/A' ratio. Deletion of Oip5os1 in a setting of diabetes had no significant impact on ventricular function or ventricular weight, but was associated with left atrial dysfunction (reduced fractional shortening) and myopathy which was associated with anesthesia intolerance and premature death in the majority of KO mice tested during cardiac functional assessment. This atrial phenotype was not observed in WT diabetic mice. The most striking molecular difference was a reduction in the metabolic regulator ERRalpha in the atria of KO mice compared with WT mice. There was also a trend for a reduction in Serca2a. These findings highlight Oip5os1 as a gene of interest in aspects of atrial function in the setting of diabetes, highlighting an additional functional role for this lncRNA in cardiac pathological settings.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Experimental , RNA, Long Noncoding , Animals , Male , Mice , Atrial Fibrillation/complications , Atrial Fibrillation/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Heart Atria/metabolism , Heart Atria/pathology , Myocardium/pathology , RNA, Long Noncoding/genetics
4.
Cells ; 11(19)2022 10 03.
Article in English | MEDLINE | ID: mdl-36231079

ABSTRACT

MicroRNA 34a (miR-34a) is elevated in the heart in a setting of cardiac stress or pathology, and we previously reported that inhibition of miR-34a in vivo provided protection in a setting of pressure overload-induced pathological cardiac hypertrophy and dilated cardiomyopathy. Prior work had also shown that circulating or cardiac miR-34a was elevated in a setting of diabetes. However, the therapeutic potential of inhibiting miR-34a in vivo in the diabetic heart had not been assessed. In the current study, type 1 diabetes was induced in adult male mice with 5 daily injections of streptozotocin (STZ). At 8 weeks post-STZ, when mice had established type 1 diabetes and diastolic dysfunction, mice were administered locked nucleic acid (LNA)-antimiR-34a or saline-control with an eight-week follow-up. Cardiac function, cardiac morphology, cardiac fibrosis, capillary density and gene expression were assessed. Diabetic mice presented with high blood glucose, elevated liver and kidney weights, diastolic dysfunction, mild cardiac enlargement, cardiac fibrosis and reduced myocardial capillary density. miR-34a was elevated in the heart of diabetic mice in comparison to non-diabetic mice. Inhibition of miR-34a had no significant effect on diastolic function or atrial enlargement, but had a mild effect on preventing an elevation in cardiac enlargement, fibrosis and ventricular gene expression of B-type natriuretic peptide (BNP) and the anti-angiogenic miRNA (miR-92a). A miR-34a target, vinculin, was inversely correlated with miR-34a expression, but other miR-34a targets were unchanged. In summary, inhibition of miR-34a provided limited protection in a mouse model with established type 1 diabetes-induced cardiomyopathy and failed to improve diastolic function. Given diabetes represents a systemic disorder with numerous miRNAs dysregulated in the diabetic heart, as well as other organs, strategies targeting multiple miRNAs and/or earlier intervention is likely to be required.


Subject(s)
Cardiomyopathy, Dilated , Diabetes Mellitus, Type 1 , MicroRNAs , Animals , Blood Glucose , Cardiomegaly/genetics , Cardiomegaly/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Disease Models, Animal , Fibrosis , Male , Mice , Mice, Inbred Strains , MicroRNAs/metabolism , Natriuretic Peptide, Brain , Streptozocin , Vinculin
5.
Circulation ; 145(25): 1853-1866, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35616058

ABSTRACT

BACKGROUND: The insulin-like growth factor 1 (IGF1) pathway is a key regulator of cellular metabolism and aging. Although its inhibition promotes longevity across species, the effect of attenuated IGF1 signaling on cardiac aging remains controversial. METHODS: We performed a lifelong study to assess cardiac health and lifespan in 2 cardiomyocyte-specific transgenic mouse models with enhanced versus reduced IGF1 receptor (IGF1R) signaling. Male mice with human IGF1R overexpression or dominant negative phosphoinositide 3-kinase mutation were examined at different life stages by echocardiography, invasive hemodynamics, and treadmill coupled to indirect calorimetry. In vitro assays included cardiac histology, mitochondrial respiration, ATP synthesis, autophagic flux, and targeted metabolome profiling, and immunoblots of key IGF1R downstream targets in mouse and human explanted failing and nonfailing hearts, as well. RESULTS: Young mice with increased IGF1R signaling exhibited superior cardiac function that progressively declined with aging in an accelerated fashion compared with wild-type animals, resulting in heart failure and a reduced lifespan. In contrast, mice with low cardiac IGF1R signaling exhibited inferior cardiac function early in life, but superior cardiac performance during aging, and increased maximum lifespan, as well. Mechanistically, the late-life detrimental effects of IGF1R activation correlated with suppressed autophagic flux and impaired oxidative phosphorylation in the heart. Low IGF1R activity consistently improved myocardial bioenergetics and function of the aging heart in an autophagy-dependent manner. In humans, failing hearts, but not those with compensated hypertrophy, displayed exaggerated IGF1R expression and signaling activity. CONCLUSIONS: Our findings indicate that the relationship between IGF1R signaling and cardiac health is not linear, but rather biphasic. Hence, pharmacological inhibitors of the IGF1 pathway, albeit unsuitable for young individuals, might be worth considering in older adults.


Subject(s)
Insulin-Like Growth Factor I , Longevity , Aged , Animals , Health Promotion , Humans , Insulin-Like Growth Factor I/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
6.
Cell Signal ; 91: 110213, 2022 03.
Article in English | MEDLINE | ID: mdl-34902541

ABSTRACT

Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, ß-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.


Subject(s)
Heart , Protein Phosphatase 2 , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Phosphatase 2/metabolism , Protein Processing, Post-Translational
7.
J Vis Exp ; (178)2021 12 07.
Article in English | MEDLINE | ID: mdl-34958085

ABSTRACT

Recombinant adeno-associated viruses (rAAV) have proven to be a safe and successful vector for transferring genetic material to treat various health conditions in both the laboratory and the clinic. However, pre-existing neutralizing antibodies (NAbs) against AAV capsids pose an ongoing challenge for the successful administration of gene therapies in both large animal experimental models and human populations. Preliminary screening for host immunity against AAV is necessary to ensure the efficacy of AAV-based gene therapies as both a research tool and as a clinically viable therapeutic agent. This protocol describes a colorimetric in vitro assay to detect neutralizing factors against AAV serotype 6 (AAV6). The assay utilizes the reaction between an AAV encoding an alkaline phosphatase (AP) reporter gene and its substrate NBT/BCIP, which generates an insoluble quantifiable purple stain upon combination. In this protocol, serum samples are combined with an AAV expressing AP and incubated to permit potential neutralizing activity to occur. Virus serum mixture is subsequently added to cells to allow for viral transduction of any AAVs that have not been neutralized. The NBT/BCIP substrate is added and undergoes a chromogenic reaction, corresponding to viral transduction and neutralizing activity. The proportion of area colored is quantitated using a free software tool to generate neutralizing titers. This assay displays a strong positive correlation between coloration and viral concentration. Assessment of serum samples from sheep before and after administration of a recombinant AAV6 led to a dramatic increase in neutralizing activity (125 to >10,000-fold increase). The assay displayed adequate sensitivity to detect neutralizing activity in >1:32,000 serum dilutions. This assay provides a simple, rapid, and cost-effective method to detect NAbs against AAVs.


Subject(s)
Antibodies, Neutralizing , Genetic Vectors , Animals , Antibodies, Viral , Colorimetry , Dependovirus/genetics , Sheep/genetics
8.
Cells ; 10(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34831402

ABSTRACT

Heat shock protein (HSP) 70 is a molecular chaperone that regulates protein structure in response to thermal stress. In addition, HSP70 is involved in post-translational modification and is related to the severity of some diseases. Here, we tested the functional relevance of long-lasting HSP70 expression in a model of nonischemic heart failure using protein phosphatase 2 catalytic subunit A (PP2CA)-expressing transgenic mice. These transgenic mice, with cardiac-specific overexpression of PP2CA, abruptly died after 12 weeks of postnatal life. Serial echocardiograms to assess cardiac function revealed that the ejection fraction (EF) was gradually decreased in transgenic PP2CA (TgPP2CA) mice. In addition, PP2CA expression exacerbated systolic dysfunction and LV dilatation, with free wall thinning, which are indicators of fatal dilated cardiomyopathy. Interestingly, simultaneous expression of HSP70 in double transgenic mice (dTg) significantly improved the dilated cardiomyopathy phenotype of TgPP2CA mice. We observed better survival, preserved EF, reduced chamber enlargement, and suppression of free wall thinning. In the proposed molecular mechanism, HSP70 preferentially regulates the phosphorylation of AKT. Phosphorylation of AKT was significantly reduced in TgPP2CA mice but was not significantly lower in dTg mice. Signal crosstalk between AKT and its substrates, in association with HSP70, might be a useful intervention for patients with nonischemic heart failure to suppress cardiac remodeling and improve survival.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heart Failure/metabolism , Heart Failure/physiopathology , Protein Phosphatase 2/metabolism , Ventricular Remodeling , Animals , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Chronic Disease , Electrocardiography , Gene Expression Regulation , Heart Failure/diagnostic imaging , Heart Failure/genetics , Mice, Transgenic , Phenotype , Phosphorylation , Protein Processing, Post-Translational , Survival Analysis
9.
STAR Protoc ; 2(4): 100866, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34647038

ABSTRACT

This protocol features parallel isolation of myocytes and non-myocytes from murine hearts. It was designed with considerations for (1) time required to extract cardiac cells, (2) cell viability, and (3) protocol scalability. Here, a peristaltic pump and 3D-printed elements are combined to perfuse the heart with enzymes to dissociate cells. Myocytes and non-myocytes extracted using this protocol are separated by centrifugation and/or fluorescence-activated cell sorting for use in downstream applications including single-cell omics or other bio-molecular analyses. For complete details on the use and execution of this protocol, please refer to McLellan et al. (2020).


Subject(s)
Cell Separation/methods , Myocardium/cytology , Myocytes, Cardiac , Single-Cell Analysis/methods , Animals , Cell Culture Techniques , Cells, Cultured , Genomics , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/classification , Myocytes, Cardiac/cytology
10.
Mol Metab ; 53: 101292, 2021 11.
Article in English | MEDLINE | ID: mdl-34246805

ABSTRACT

OBJECTIVE: CRISPR/Cas9 technology has revolutionized gene editing and fast tracked our capacity to manipulate genes of interest for the benefit of both research and therapeutic applications. Whilst many advances have, and continue to be made in this area, perhaps the most utilized technology to date has been the generation of knockout cells, tissues and animals. The advantages of this technology are many fold, however some questions still remain regarding the effects that long term expression of foreign proteins such as Cas9, have on mammalian cell function. Several studies have proposed that chronic overexpression of Cas9, with or without its accompanying guide RNAs, may have deleterious effects on cell function and health. This is of particular concern when applying this technology in vivo, where chronic expression of Cas9 in tissues of interest may promote disease-like phenotypes and thus confound the investigation of the effects of the gene of interest. Although these concerns remain valid, no study to our knowledge has yet to demonstrate this directly. METHODS: In this study we used the lox-stop-lox (LSL) spCas9 ROSA26 transgenic (Tg) mouse line to generate four tissue-specific Cas9-Tg models that express Cas9 in the heart, liver, skeletal muscle or adipose tissue. We performed comprehensive phenotyping of these mice up to 20-weeks of age and subsequently performed molecular analysis of their organs. RESULTS: We demonstrate that Cas9 expression in these tissues had no detrimental effect on whole body health of the animals, nor did it induce any tissue-specific effects on whole body energy metabolism, liver health, inflammation, fibrosis, heart function or muscle mass. CONCLUSIONS: Our data suggests that these models are suitable for studying the tissue specific effects of gene deletion using the LSL-Cas9-Tg model, and that phenotypes observed utilizing these models can be confidently interpreted as being gene specific, and not confounded by the chronic overexpression of Cas9.


Subject(s)
CRISPR-Associated Protein 9/genetics , Animals , CRISPR-Cas Systems/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
11.
iScience ; 24(6): 102537, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142046

ABSTRACT

Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure.

12.
J Am Coll Cardiol ; 77(22): 2846-2864, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34082914

ABSTRACT

Atrial enlargement in response to pathological stimuli (e.g., hypertension, mitral valve disease) and physiological stimuli (exercise, pregnancy) can be comparable in magnitude, but the diseased enlarged atria is associated with complications such as atrial fibrillation (AF), whereas physiological atrial enlargement is not. Pathological atrial enlargement and AF is also observed in a small percentage of athletes undergoing extreme/intense endurance sport and pregnant women with preeclampsia. Differences between physiological and pathological atrial enlargement and underlying mechanisms are poorly understood. This review describes human and animal studies characterizing atrial enlargement under physiological and pathological conditions and highlights key knowledge gaps and clinical challenges, including: 1) the limited ability of atria to reverse remodel; and 2) distinguishing physiological and pathological enlargement via imaging/biomarkers. Finally, this review discusses how targeting distinct molecular mechanisms underlying physiological and pathological atrial enlargement could provide new therapeutic and diagnostic strategies for preventing or reversing atrial enlargement and AF.


Subject(s)
Atrial Remodeling , Heart Diseases/physiopathology , Animals , Athletes , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Female , Humans , Pregnancy/physiology , Sex Characteristics
13.
Proteomics ; 21(13-14): e2100026, 2021 07.
Article in English | MEDLINE | ID: mdl-33861516

ABSTRACT

Cardiac intercellular communication is critical for heart function and often dysregulated in cardiovascular diseases. While cardiac extracellular vesicles (cEVs) are emerging mediators of signalling, their isolation remains a technical challenge hindering our understanding of cEV protein composition. Here, we utilised Langendorff-collagenase-based enzymatic perfusion and differential centrifugation to isolate cEVs from mouse heart (yield 3-6 µg/heart). cEVs are ∼200 nm, express classical EV markers (Cd63/81/9+ , Tsg101+ , Pdcd6ip/Alix+ ), and are depleted of blood (Alb/Fga/Hba) and cardiac damage markers (Mb, Tnnt2, Ldhb). Comparison with mechanically-derived EVs revealed greater detection of EV markers and decreased cardiac damage contaminants. Mass spectrometry-based proteomic profiling revealed 1721 proteins in cEVs, implicated in proteasomal and autophagic proteostasis, glycolysis, and fatty acid metabolism; essential functions often disrupted in cardiac pathologies. There was striking enrichment of 942 proteins in cEVs compared to mouse heart tissue - implicated in EV biogenesis, antioxidant activity, and lipid transport, suggesting active cargo selection and specialised function. Interestingly, cEVs contain marker proteins for cardiomyocytes, cardiac progenitors, B-cells, T-cells, macrophages, smooth muscle cells, endothelial cells, and cardiac fibroblasts, suggesting diverse cellular origin. We present a method of cEV isolation and provide insight into potential functions, enabling future studies into EV roles in cardiac physiology and disease.


Subject(s)
Extracellular Vesicles , Proteome , Animals , Biomarkers , Endothelial Cells , Mice , Proteomics
14.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804032

ABSTRACT

Cardiac fibrosis is associated with most forms of cardiovascular disease. No reliable therapies targeting cardiac fibrosis are available, thus identifying novel drugs that can resolve or prevent fibrosis is needed. Tilorone, an antiviral agent, can prevent fibrosis in a mouse model of lung disease. We investigated the anti-fibrotic effects of tilorone in human cardiac fibroblasts in vitro by performing a radioisotopic assay for [3H]-proline incorporation as a proxy for collagen synthesis. Exploratory studies in human cardiac fibroblasts treated with tilorone (10 µM) showed a significant reduction in transforming growth factor-ß induced collagen synthesis compared to untreated fibroblasts. To determine if this finding could be recapitulated in vivo, mice with established pathological remodelling due to four weeks of transverse aortic constriction (TAC) were administered tilorone (50 mg/kg, i.p) or saline every third day for eight weeks. Treatment with tilorone was associated with attenuation of fibrosis (assessed by Masson's trichrome stain), a favourable cardiac gene expression profile and no further deterioration of cardiac systolic function determined by echocardiography compared to saline treated TAC mice. These data demonstrate that tilorone has anti-fibrotic actions in human cardiac fibroblasts and the adult mouse heart, and represents a potential novel therapy to treat fibrosis associated with heart failure.

15.
Am J Physiol Heart Circ Physiol ; 320(4): H1470-H1485, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33577435

ABSTRACT

The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110α (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor that regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by 1) swim training or 2) cardiac-specific transgenic expression of constitutively active PI3K (caPI3KTg+). Under basal conditions, male and female cKO mice displayed mild interstitial fibrosis compared with control (CON) littermates, but no other signs of cardiac pathology were present. In response to exercise training, female CON mice displayed an increase (∼21%) in heart weight normalized to tibia length vs. untrained mice. Exercise-induced hypertrophy was blunted in cKO mice. Exercise increased cardiac Akt phosphorylation and IGF1R expression but was comparable between genotypes. However, differences in Foxo3a, Hsp70, and autophagy markers were identified in hearts of exercised cKO mice. Deletion of FoxO1 did not reduce cardiac hypertrophy in male or female caPI3KTg+ mice. Cardiac Akt and FoxO1 protein expressions were significantly reduced in hearts of caPI3KTg+ mice, which may represent a negative feedback mechanism from chronic caPI3K, and negate any further effect of reducing FoxO1 in the cKO. In summary, FoxO1 contributes to exercise-induced hypertrophy. This has important implications when one is considering FoxO1 as a target for treating the diseased heart.NEW & NOTEWORTHY Regulators of exercise-induced physiological cardiac hypertrophy and protection are considered promising targets for the treatment of heart failure. Unlike pathological hypertrophy, the transcriptional regulation of physiological hypertrophy has remained largely elusive. To our knowledge, this is the first study to show that the transcription factor FoxO1 is a critical mediator of exercise-induced cardiac hypertrophy. Given that exercise-induced hypertrophy is protective, this finding has important implications when one is considering FoxO1 as a target for treating the diseased heart.


Subject(s)
Cardiomegaly, Exercise-Induced , Cardiomegaly/enzymology , Class I Phosphatidylinositol 3-Kinases/metabolism , Forkhead Box Protein O1/metabolism , Myocytes, Cardiac/enzymology , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Class I Phosphatidylinositol 3-Kinases/genetics , Enzyme Activation , Female , Fibrosis , Forkhead Box Protein O1/deficiency , Forkhead Box Protein O1/genetics , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Gene Expression Regulation , HSP70 Heat-Shock Proteins/metabolism , Male , Mice, Knockout , Myocytes, Cardiac/pathology , Phenotype , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , Swimming
17.
Diabetes ; 70(1): 255-261, 2021 01.
Article in English | MEDLINE | ID: mdl-33115826

ABSTRACT

The incidence of atrial fibrillation (AF) is higher in patients with diabetes. The goal of this study was to assess if the addition of plasma lipids to traditional risk factors could improve the ability to detect and predict future AF in patients with type 2 diabetes. Logistic regression models were used to identify lipids associated with AF or future AF from plasma lipids (n = 316) measured from participants in the ADVANCE trial (n = 3,772). To gain mechanistic insight, follow-up lipid analysis was undertaken in a mouse model that has an insulin-resistant heart and is susceptible to AF. Sphingolipids, cholesteryl esters, and phospholipids were associated with AF prevalence, whereas two monosialodihexosylganglioside (GM3) ganglioside species were associated with future AF. For AF detection and prediction, addition of six and three lipids, respectively, to a base model (n = 12 conventional risk factors) increased the C-statistics (detection: from 0.661 to 0.725; prediction: from 0.674 to 0.715) and categorical net reclassification indices. The GM3(d18:1/24:1) level was lower in patients in whom AF developed, improved the C-statistic for the prediction of future AF, and was lower in the plasma of the mouse model susceptible to AF. This study demonstrates that plasma lipids have the potential to improve the detection and prediction of AF in patients with diabetes.


Subject(s)
Atrial Fibrillation/diagnosis , Diabetes Mellitus, Type 2/complications , Lipids/blood , Aged , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Mice , Middle Aged , Risk Assessment , Risk Factors
18.
J Sport Health Sci ; 10(6): 637-647, 2021 12.
Article in English | MEDLINE | ID: mdl-33246162

ABSTRACT

Heart failure represents the end point of a variety of cardiovascular diseases. It is a growing health burden and a leading cause of death worldwide. To date, limited treatment options exist for the treatment of heart failure, but exercise has been well-established as one of the few safe and effective interventions, leading to improved outcomes in patients. However, a lack of patient adherence remains a significant barrier in the implementation of exercise-based therapy for the treatment of heart failure. The insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway has been recognized as perhaps the most critical pathway for mediating exercised-induced heart growth and protection. Here, we discuss how modulating activity of the IGF1-PI3K pathway may be a valuable approach for the development of therapies that mimic the protective effects of exercise on the heart. We outline some of the promising approaches being investigated that utilize PI3K-based therapy for the treatment of heart failure. We discuss the implications for cardiac pathology and cardiotoxicity that arise in a setting of reduced PI3K activity. Finally, we discuss the use of animal models of cardiac health and disease, and genetic mice with increased or decreased cardiac PI3K activity for the discovery of novel drug targets and biomarkers of cardiovascular disease.


Subject(s)
Heart Failure , Phosphatidylinositol 3-Kinases , Animals , Biomarkers , Cardiomegaly , Cardiotoxicity , Heart Failure/therapy , Humans , Insulin-Like Growth Factor I , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
19.
J Mol Cell Cardiol ; 148: 106-119, 2020 11.
Article in English | MEDLINE | ID: mdl-32918915

ABSTRACT

AIMS: Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca2+ handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca2+ handling and electrophysiology. METHODS AND RESULTS: Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca2+ handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these "exercise-miRNAs" individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the "exercise-miRNAs", miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca2+ release whereas miR-214-3p and miR-31a-5p prolonged Ca2+ decay. CONCLUSION: Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca2+ handling and electrophysiology and could be potential treatment targets.


Subject(s)
Electrophysiological Phenomena , Heart Failure/genetics , Heart Failure/physiopathology , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Physical Conditioning, Animal , Aerobiosis , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/physiopathology , Biomarkers/metabolism , Cardiomegaly/complications , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Female , Gene Expression Regulation , Heart Failure/complications , MicroRNAs/metabolism , Myocardial Contraction/physiology , Myocardial Infarction/complications , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley , Ventricular Fibrillation/complications , Ventricular Fibrillation/genetics , Ventricular Fibrillation/physiopathology
20.
Front Pharmacol ; 11: 672, 2020.
Article in English | MEDLINE | ID: mdl-32499698

ABSTRACT

Andersen-Tawil syndrome (ATS) type-1 is associated with loss-of-function mutations in KCNJ2 gene. KCNJ2 encodes the tetrameric inward-rectifier potassium channel Kir2.1, important to the resting phase of the cardiac action potential. Kir-channels' activity requires interaction with the agonist phosphatidylinositol-4,5-bisphosphate (PIP2). Two mutations were identified in ATS patients, V77E in the cytosolic N-terminal "slide helix" and M307V in the C-terminal cytoplasmic gate structure "G-loop." Current recordings in Kir2.1-expressing HEK cells showed that each of the two mutations caused Kir2.1 loss-of-function. Biotinylation and immunostaining showed that protein expression and trafficking of Kir2.1 to the plasma membrane were not affected by the mutations. To test the functional effect of the mutants in a heterozygote set, Kir2.1 dimers were prepared. Each dimer was composed of two Kir2.1 subunits joined with a flexible linker (i.e. WT-WT, WT dimer; WT-V77E and WT-M307V, mutant dimer). A tetrameric assembly of Kir2.1 is expected to include two dimers. The protein expression and the current density of WT dimer were equally reduced to ~25% of the WT monomer. Measurements from HEK cells and Xenopus oocytes showed that the expression of either WT-V77E or WT-M307V yielded currents of only about 20% compared to the WT dimer, supporting a dominant-negative effect of the mutants. Kir2.1 sensitivity to PIP2 was examined by activating the PIP2 specific voltage-sensitive phosphatase (VSP) that induced PIP2 depletion during current recordings, in HEK cells and Xenopus oocytes. PIP2 depletion induced a stronger and faster decay in Kir2.1 mutant dimers current compared to the WT dimer. BGP-15, a drug that has been demonstrated to have an anti-arrhythmic effect in mice, stabilized the Kir2.1 current amplitude following VSP-induced PIP2 depletion in cells expressing WT or mutant dimers. This study underlines the implication of mutations in cytoplasmic regions of Kir2.1. A newly developed calibrated VSP activation protocol enabled a quantitative assessment of changes in PIP2 regulation caused by the mutations. The results suggest an impaired function and a dominant-negative effect of the Kir2.1 variants that involve an impaired regulation by PIP2. This study also demonstrates that BGP-15 may be beneficial in restoring impaired Kir2.1 function and possibly in treating ATS symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...