Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Immunol Rev ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747455

ABSTRACT

Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.

2.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617217

ABSTRACT

The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.

3.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659897

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity. B-1 cells spontaneously secrete natural IgM and prevent inflammation in several disease states. One class of these IgM recognize oxidation-specific epitopes (OSE), which have been shown to be generated in lung injury and to promote fibrosis. A main B-1 cell reservoir is the pleural space, adjacent to the typical distribution of fibrosis in IPF. In this study, we demonstrate that B-1 cells are recruited to the lung during injury where they secrete IgM to OSE (IgM OSE ). We also show that the pleural B-1 cell reservoir responds to lung injury through regulation of the chemokine receptor CXCR4. Mechanistically we show that the transcription factor Id3 is a novel negative regulator of CXCR4 expression. Using mice with B-cell specific Id3 deficiency, a model of increased B-1b cells, we demonstrate decreased bleomycin-induced fibrosis compared to littermate controls. Furthermore, we show that mice deficient in secretory IgM ( sIgM -/- ) have higher mortality in response to bleomycin-induced lung injury, which is partially mitigated through airway delivery of the IgM OSE E06. Additionally, we provide insight into potential mechanisms of IgM in attenuation of fibrosis through RNA sequencing and pathway analysis, highlighting complement activation and extracellular matrix deposition as key differentially regulated pathways.

4.
Front Immunol ; 15: 1380641, 2024.
Article in English | MEDLINE | ID: mdl-38601144

ABSTRACT

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Subject(s)
B-Lymphocyte Subsets , Mice , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocytes , Immunoglobulin Light Chains/genetics , Translocation, Genetic , Immunoglobulin M , Cell Count
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474140

ABSTRACT

Monocytes are associated with human cardiovascular disease progression. Monocytes are segregated into three major subsets: classical (cMo), intermediate (iMo), and nonclassical (nMo). Recent studies have identified heterogeneity within each of these main monocyte classes, yet the extent to which these subsets contribute to heart disease progression is not known. Peripheral blood mononuclear cells (PBMC) were obtained from 61 human subjects within the Coronary Assessment of Virginia (CAVA) Cohort. Coronary atherosclerosis severity was quantified using the Gensini Score (GS). We employed high-dimensional single-cell transcriptome and protein methods to define how human monocytes differ in subjects with low to severe coronary artery disease. We analyzed 487 immune-related genes and 49 surface proteins at the single-cell level using Antibody-Seq (Ab-Seq). We identified six subsets of myeloid cells (cMo, iMo, nMo, plasmacytoid DC, classical DC, and DC3) at the single-cell level based on surface proteins, and we associated these subsets with coronary artery disease (CAD) incidence based on Gensini score (GS) in each subject. Only frequencies of iMo were associated with high CAD (GS > 32), adj.p = 0.024. Spearman correlation analysis with GS from each subject revealed a positive correlation with iMo frequencies (r = 0.314, p = 0.014) and further showed a robust sex-dependent positive correlation in female subjects (r = 0.663, p = 0.004). cMo frequencies did not correlate with CAD severity. Key gene pathways differed in iMo among low and high CAD subjects and between males and females. Further single-cell analysis of iMo revealed three iMo subsets in human PBMC, distinguished by the expression of HLA-DR, CXCR3, and CD206. We found that the frequency of immunoregulatory iMo_HLA-DR+CXCR3+CD206+ was associated with CAD severity (adj.p = 0.006). The immunoregulatory iMo subset positively correlated with GS in both females (r = 0.660, p = 0.004) and males (r = 0.315, p = 0.037). Cell interaction analyses identified strong interactions of iMo with CD4+ effector/memory T cells and Tregs from the same subjects. This study shows the importance of iMo in CAD progression and suggests that iMo may have important functional roles in modulating CAD risk, particularly among females.


Subject(s)
Coronary Artery Disease , Humans , Female , Male , Coronary Artery Disease/metabolism , Monocytes/metabolism , Leukocytes, Mononuclear , Sex Characteristics , HLA-DR Antigens/metabolism
7.
Cardiovasc Res ; 120(3): 318-328, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38381113

ABSTRACT

AIMS: The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies. We therefore investigated the direct role of Tfh cells and the role of IL18 in Tfh differentiation in atherosclerosis. METHODS AND RESULTS: We generated atherosclerotic mouse models with selective genetic deletion of Tfh cells, MZB cells, or IL18 signalling in Tfh cells. Surprisingly, mice lacking Tfh cells had increased atherosclerosis. Lack of Tfh not only reduced class-switched IgG antibodies against oxidation-specific epitopes (OSEs) but also reduced atheroprotective natural IgM-type anti-phosphorylcholine (PC) antibodies, despite no alteration of natural B1 cells. Moreover, the absence of Tfh cells was associated with an accumulation of MZB cells with substantially reduced ability to secrete antibodies. In the same manner, MZB cell deficiency in Ldlr-/- mice was associated with a significant decrease in atheroprotective IgM antibodies, including natural anti-PC IgM antibodies. In humans, we found a positive correlation between circulating MZB-like cells and anti-OSE IgM antibodies. Finally, we identified an important role for IL18 signalling in HF/HC diet-induced Tfh. CONCLUSION: Our findings reveal a previously unsuspected role of MZB cells in regulating atheroprotective 'natural' IgM antibody production in a Tfh-dependent manner, which could have important pathophysiological and therapeutic implications.


Subject(s)
Atherosclerosis , Interleukin-18 , Humans , Mice , Animals , Immunoglobulin M , B-Lymphocytes , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cholesterol , T-Lymphocytes, Helper-Inducer
8.
Front Immunol ; 14: 1239148, 2023.
Article in English | MEDLINE | ID: mdl-37828989

ABSTRACT

Coronary artery disease (CAD) is a major cause of death worldwide. The role of CD8+ T cells in CAD is unknown. Recent studies suggest a breakdown of tolerance in atherosclerosis, resulting in active T cell receptor (TCR) engagement with self-antigens. We hypothesized that TCR engagement would leave characteristic gene expression signatures. In a single cell RNA-sequencing analysis of CD8+ T cells from 30 patients with CAD and 30 controls we found significant enrichment of TCR signaling pathways in CAD+ subjects, suggesting recent TCR engagement. We also found significant enrichment of cytotoxic and exhaustion pathways in CAD cases compared to controls. Highly significant upregulation of TCR signaling in CAD indicates that CD8 T cells reactive to atherosclerosis antigens are prominent in the blood of CAD cases compared to controls.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Transcriptome , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Atherosclerosis/metabolism
9.
HIV Med ; 24(11): 1106-1114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37474730

ABSTRACT

OBJECTIVES: The advent of antiretroviral therapy (ART) has reduced AIDS-related morbidity and mortality among people living with HIV (PLWH). Due to increased survival, PLWH have now been found to be at risk of chronic conditions related to ageing, such as cardiovascular disease (CVD). Hypertension is common in PLWH and is a major risk factor for the development of CVD. We conducted a systematic literature review to evaluate the research evidence on longitudinal blood pressure (BP) trajectories following ART initiation in PLWH. METHODS: We searched the following databases: PubMed, CINHAL, Scopus, and Web of Science (up to 15 March 2021) for peer-reviewed published studies that reported BP trajectories following ART initiation in PLWH. Three reviewers independently screened all studies by title and abstract. We included articles in English, published up to March 2021, that report office BP trajectories in PLWH initiating ART. A total of 10 publications met our inclusion criteria. Eight studies were prospective cohorts and two were retrospective. RESULTS: Nine out of 10 studies in the literature reported an increase in systolic BP (4.7-10.0 mmHg in studies with a follow-up range of 6 months to 8 years, and 3.0-4.7 mmHg/year in time-averaged studies). In addition, four out of 10 studies reported increases in diastolic BP (2.3-8.0 mmHg for a 6 month to 6.8-year follow-up range and 2.3 mmHg/year). CONCLUSION: Systolic BP consistently increases while diastolic BP changes are more heterogeneous following ART initiation in PLWH. However, the studies were highly variable with respect to population demographics, ART regimen and duration, and follow-up time. Nevertheless, given the risks of CVD complications, such as stroke, heart failure and myocardial infarction, associated with elevated BP, results highlight the importance of future research in this area. It will be important to better characterize BP trajectories over time, identify the most critical times for interventions to reduce BP, determine the long-term CVD consequences in PLWH with elevated BP, and understand how different ART regimens may or may not influence BP and CVD disease.


Subject(s)
Cardiovascular Diseases , HIV Infections , Hypertension , Humans , HIV Infections/complications , HIV Infections/drug therapy , Blood Pressure , Prospective Studies , Retrospective Studies , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology
11.
Front Immunol ; 14: 1296668, 2023.
Article in English | MEDLINE | ID: mdl-38259450

ABSTRACT

Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE-/- mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Animals , Mice , Aging , Aorta
13.
Cell Immunol ; 381: 104603, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36182705

ABSTRACT

Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.

14.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077273

ABSTRACT

Despite the decades-old knowledge that males and people with diabetes mellitus (DM) are at increased risk for coronary artery disease (CAD), the reasons for this association are only partially understood. Among the immune cells involved, recent evidence supports a critical role of T cells as drivers and modifiers of CAD. CD4+ T cells are commonly found in atherosclerotic plaques. We aimed to understand the relationship of CAD with sex and DM by single-cell RNA (scRNA-Seq) and antibody sequencing (CITE-Seq) of CD4+ T cells. Peripheral blood mononuclear cells (PBMCs) of 61 men and women who underwent cardiac catheterization were interrogated by scRNA-Seq combined with 49 surface markers (CITE-Seq). CAD severity was quantified using Gensini scores, with scores above 30 considered CAD+ and below 6 considered CAD-. Four pairs of groups were matched for clinical and demographic parameters. To test how sex and DM changed cell proportions and gene expression, we compared matched groups of men and women, as well as diabetic and non-diabetic subjects. We analyzed 41,782 single CD4+ T cell transcriptomes for sex differences in 16 women and 45 men with and without coronary artery disease and with and without DM. We identified 16 clusters in CD4+ T cells. The proportion of cells in CD4+ effector memory cluster 8 (CD4T8, CCR2+ Em) was significantly decreased in CAD+, especially among DM+ participants. This same cluster, CD4T8, was significantly decreased in female participants, along with two other CD4+ T cell clusters. In CD4+ T cells, 31 genes showed significant and coordinated upregulation in both CAD and DM. The DM gene signature was partially additive to the CAD gene signature. We conclude that (1) CAD and DM are clearly reflected in PBMC transcriptomes, and (2) significant differences exist between women and men and (3) between subjects with DM and non-DM.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , CD4-Positive T-Lymphocytes , Coronary Angiography , Coronary Artery Disease/genetics , Diabetes Mellitus/genetics , Female , Humans , Leukocytes, Mononuclear , Male , Sex Characteristics , Single-Cell Analysis
15.
Front Immunol ; 13: 909475, 2022.
Article in English | MEDLINE | ID: mdl-35935999

ABSTRACT

Immunoglobulin M (IgM) to oxidation specific epitopes (OSE) are inversely associated with atherosclerosis in mice and humans. The B-1b subtype of B-1 cells secrete IgM to OSE, and unlike B-1a cells, are capable of long-lasting IgM memory. What attributes make B-1b cells different than B-1a cells is unknown. Our objectives were to determine how B-1b cells produce more IgM compared to B-1a cells at homeostatic condition and to see the differences in the B-1a and B-1b cell distribution and IgM CDR-H3 sequences in mice with advanced atherosclerosis. Here, in-vivo studies demonstrated greater migration to spleen, splenic production of IgM and plasma IgM levels in ApoE-/-Rag1-/- mice intraperitoneally injected with equal numbers of B-1b compared to B-1a cells. Bulk RNA seq analysis and flow cytometry of B-1a and B-1b cells identified CCR6 as a chemokine receptor more highly expressed on B-1b cells compared to B-1a. Knockout of CCR6 resulted in reduced B-1b cell migration to the spleen. Moreover, B-1b cell numbers were significantly higher in spleen of aged atherosclerotic ApoE-/- mice compared to young ApoE-/- mice. Single cell sequencing results of IgHM in B-1a and B-1b cells from peritoneal cavity and spleen of atherosclerotic aged ApoE-/- mice revealed significantly more N additions at the V-D and D-J junctions, greater diversity in V region usage and CDR-H3 sequences in B-1b compared to B-1a cells. In summary, B-1b cells demonstrated enhanced CCR6-mediated splenic migration, IgM production, and IgM repertoire diversification compared to B-1a cells. These findings suggest that potential strategies to selectively augment B-1b cell numbers and splenic trafficking could lead to increased and more diverse IgM targeting OSE to limit atherosclerosis.


Subject(s)
Atherosclerosis , Aged , Animals , Apolipoproteins E , Atherosclerosis/genetics , Homeostasis , Humans , Immunoglobulin M , Mice , Mice, Inbred C57BL
16.
BMC Biol ; 20(1): 193, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36045343

ABSTRACT

BACKGROUND: Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs. RESULTS: Among 31 participants in the Women's Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we showed such differences between healthy and matched individuals living with HIV with and without cardiovascular disease. CONCLUSIONS: In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method for clinical investigations using PBMCs.


Subject(s)
HIV Infections , Leukocytes, Mononuclear , Female , Flow Cytometry , Gene Expression Profiling/methods , HIV Infections/genetics , Humans , Leukocytes, Mononuclear/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome
17.
Circ Res ; 131(3): 258-276, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35766025

ABSTRACT

BACKGROUND: CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS: We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS: Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS: Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.


Subject(s)
Coronary Artery Disease , Animals , Apolipoproteins B/metabolism , CD4-Positive T-Lymphocytes , Coronary Artery Disease/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Humans , Interferon-gamma/metabolism , Major Histocompatibility Complex , Mice , Peptides/genetics
18.
Heart Vessels ; 37(10): 1719-1727, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35534640

ABSTRACT

Ventriculo-arterial (VA) coupling has been shown to have physiologic importance in heart failure (HF). We hypothesized that the systemic arterial pulsatility index (SAPi), a measure that integrates pulse pressure and a proxy for left ventricular end-diastolic pressure, would be associated with adverse outcomes in advanced HF. We evaluated the SAPi ([systemic systolic blood pressure-systemic diastolic blood pressure]/pulmonary artery wedge pressure) obtained from the final hemodynamic measurement in patients randomized to therapy guided by a pulmonary arterial catheter (PAC) and with complete data in the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial. Cox proportional hazards regression was performed for the outcomes of (a) death, transplant, left ventricular assist device (DTxLVAD) or hospitalization, (DTxLVADHF) and (b) DTxLVAD. Among 142 patients (mean age 56.8 ± 13.3 years, 30.3% female), the median SAPi was 2.57 (IQR 1.63-3.45). Increasing SAPi was associated with significant reductions in DTxLVAD (HR 0.60 per unit increase in SAPi, 95% CI 0.44-0.84) and DTxLVADHF (HR 0.81 per unit increase, 95% CI 0.70-0.95). Patients with a SAPi ≤ 2.57 had a marked increase in both outcomes, including more than twice the risk of DTxLVAD (HR 2.19, 95% CI 1.11-4.30) over 6 months. Among advanced heart failure patients with invasive hemodynamic monitoring in the ESCAPE trial, SAPi was strongly associated with adverse clinical outcomes. These findings support further investigation of the SAPi to guide treatment and prognosis in HF undergoing invasive hemodynamic monitoring.


Subject(s)
Heart Failure , Heart-Assist Devices , Adult , Aged , Catheterization, Swan-Ganz , Female , Heart Failure/diagnosis , Heart Failure/therapy , Hospitalization , Humans , Male , Middle Aged , Pulmonary Wedge Pressure
20.
Circ Res ; 130(7): 981-993, 2022 04.
Article in English | MEDLINE | ID: mdl-35209718

ABSTRACT

BACKGROUND: B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. METHODS: Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS: Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 (tumor necrosis factor receptor 6) and activating NF-κB (nuclear factor kappa B), leading to subsequent C-MYC (C-myelocytomatosis) upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing single nucleotide polymorphism (SNP) at rs11574 position in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS: This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis.


Subject(s)
Atherosclerosis , B-Lymphocyte Subsets , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Humans , Immunoglobulin M , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...