Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Front Neurosci ; 18: 1452450, 2024.
Article in English | MEDLINE | ID: mdl-39170684

ABSTRACT

Rodent models of tinnitus are commonly used to study its mechanisms and potential treatments. Tinnitus can be identified by changes in the gap-induced prepulse inhibition of the acoustic startle (GPIAS), most commonly by using pressure detectors to measure the whole-body startle (WBS). Unfortunately, the WBS habituates quickly, the measuring system can introduce mechanical oscillations and the response shows considerable variability. We have instead used a motion tracking system to measure the localized motion of small reflective markers in response to an acoustic startle reflex in guinea pigs and mice. For guinea pigs, the pinna had the largest responses both in terms of displacement between pairs of markers and in terms of the speed of the reflex movement. Smaller, but still reliable responses were observed with markers on the thorax, abdomen and back. The peak speed of the pinna reflex was the most sensitive measure for calculating GPIAS in the guinea pig. Recording the pinna reflex in mice proved impractical due to removal of the markers during grooming. However, recordings from their back and tail allowed us to measure the peak speed and the twitch amplitude (area under curve) of reflex responses and both analysis methods showed robust GPIAS. When mice were administered high doses of sodium salicylate, which induces tinnitus in humans, there was a significant reduction in GPIAS, consistent with the presence of tinnitus. Thus, measurement of the peak speed or twitch amplitude of pinna, back and tail markers provides a reliable assessment of tinnitus in rodents.

2.
Sci Rep ; 14(1): 17360, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075089

ABSTRACT

Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.


Subject(s)
Anoctamin-1 , Axons , Dinoprostone , Ganglia, Spinal , NAV1.8 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Animals , Dinoprostone/pharmacology , Dinoprostone/metabolism , Axons/metabolism , Axons/drug effects , Axons/physiology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Rats , Anoctamin-1/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Action Potentials/drug effects , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Rats, Sprague-Dawley , Cells, Cultured , Solute Carrier Family 12, Member 2/metabolism , Cyclic AMP/metabolism
3.
J Neurosci ; 44(6)2024 02 07.
Article in English | MEDLINE | ID: mdl-38124021

ABSTRACT

Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active µ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.


Subject(s)
Analgesics, Opioid , Hyperalgesia , Mice , Male , Animals , Analgesics, Opioid/adverse effects , Hyperalgesia/metabolism , Ion Channels , Nociceptors , Spinal Cord/metabolism , Pain/metabolism
4.
EMBO J ; 42(3): e111348, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36524441

ABSTRACT

Moderate coolness is sensed by TRPM8 ion channels in peripheral sensory nerves, but the mechanism by which noxious cold is detected remains elusive. Here, we show that somatosensory and sympathetic neurons express two distinct mechanisms to detect noxious cold. In the first, inhibition by cold of a background outward current causes membrane depolarization that activates an inward current through voltage-dependent calcium (CaV ) channels. A second cold-activated mechanism is independent of membrane voltage, is inhibited by blockers of ORAI ion channels and by downregulation of STIM1, and is recapitulated in HEK293 cells by co-expression of ORAI1 and STIM1. Using total internal reflection fluorescence microscopy we found that cold causes STIM1 to aggregate with and activate ORAI1 ion channels, in a mechanism similar to that underlying store-operated calcium entry (SOCE), but directly activated by cold and not by emptying of calcium stores. This novel mechanism may explain the phenomenon of cold-induced vasodilation (CIVD), in which extreme cold increases blood flow in order to preserve the integrity of peripheral tissues.


Subject(s)
Calcium Channels , Calcium , Humans , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium/metabolism , HEK293 Cells , Calcium Signaling/physiology , Neurons/metabolism , ORAI1 Protein/genetics , Stromal Interaction Molecule 1/genetics , Neoplasm Proteins/genetics
5.
J Mol Biol ; 434(16): 167682, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35697294

ABSTRACT

Disordered scaffold proteins provide multivalent landing pads that, via a series of embedded Short Linear Motifs (SLiMs), bring together the components of a complex to orchestrate precise spatial and temporal regulation of cellular processes. One such protein is AKAP5 (previously AKAP79), which contains SLiMs that anchor PKA and Calcineurin, and recruit substrate (the TRPV1 receptor). Calcineurin is anchored to AKAP5 by a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that the Calcineurin PxIxIT-binding groove also recognises several hitherto unknown lower-affinity SLiMs in addition to the PxIxIT motif. We demonstrate that the assembly is in reality a complex system with conserved SLiMs spanning a wide affinity range. The capture is analogous to that seen for many DNA-binding proteins that have a weak non-specific affinity for DNA outside the canonical binding site, but different in that it involves (i) two proteins, and (ii) hydrophobic rather than electrostatic interactions. It is also compatible with the requirement for both stable anchoring of the enzyme and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that, together with the canonical SLiM, maintain a structurally disordered but tightly regulated signalosome.


Subject(s)
A Kinase Anchor Proteins , Calcineurin , Intrinsically Disordered Proteins , Phosphoric Monoester Hydrolases , A Kinase Anchor Proteins/chemistry , Calcineurin/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Phosphoric Monoester Hydrolases/chemistry , Protein Binding , Signal Transduction
6.
Sci Rep ; 12(1): 11078, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773325

ABSTRACT

Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.


Subject(s)
Artemisinins , COVID-19 Drug Treatment , Extracellular Traps , Macrophages , Neutrophils , Sepsis , Animals , Artemisinins/pharmacology , Calcium/metabolism , Calcium-Transporting ATPases/metabolism , Chemotaxis/drug effects , Cytokines/biosynthesis , Cytokines/metabolism , Extracellular Traps/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Thapsigargin/pharmacology
7.
J Neurosci ; 42(40): 7513-7529, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36658457

ABSTRACT

Migraine is believed to be initiated by neuronal activity in the CNS, that triggers excitation of nociceptive trigeminal ganglion (TG) nerve fibers innervating the meninges and thus causes a unilateral throbbing headache. Drugs that precipitate or potentiate migraine are known to elevate intracellular levels of the cyclic nucleotides cAMP or cGMP, while anti-migraine treatments couple to signaling pathways that reduce cAMP or cGMP, suggesting an involvement of these cyclic nucleotides in migraine. Members of the HCN ion channel family are activated by direct binding of cAMP or cGMP, suggesting in turn that a member of this family may be a critical trigger of migraine. Here, we show that pharmacological block or targeted genetic deletion of HCN2 abolishes migraine-like pain in three rodent migraine models (in both sexes). Induction of migraine-like pain in these models triggered expression of the protein C-FOS, a marker of neuronal activity, in neurons of the trigeminocervical complex (TCC), where TG neurons terminate, and C-FOS expression was reversed by peripheral HCN2 inhibition. HCN2 block in vivo inhibited both evoked and spontaneous neuronal activity in nociceptive TG neurons. The NO donor glyceryl trinitrate (GTN) caused an increase in cGMP in the TG in vivo Exposing isolated TG neurons to GTN caused a rightward shift in the voltage dependence of HCN currents and thus increased neuronal excitability. This work identifies HCN2 as a novel target for the development of migraine treatments.SIGNIFICANCE STATEMENT Migraine is believed to be initiated by localized excitability of neurons within the CNS, but the most disturbing symptom, the characteristic throbbing migraine headache pain, is widely agreed to be caused by activity in afferent pain-sensitive (nociceptive) nerve fibers of the trigeminal nerve. Using a variety of preclinical models of migraine, we identify the HCN2 ion channel as the molecular source of trigeminal hyperexcitability in migraine and we show that pharmacological or genetic inhibition of HCN2 can relieve migraine-like pain symptoms. The work highlights the HCN2 ion channel as a potential pharmacological target for the development of novel analgesics effective in migraine.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Migraine Disorders , Animals , Male , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Rodentia , Pain/metabolism , Migraine Disorders/genetics , Headache , Nucleotides, Cyclic
8.
Pain Rep ; 6(4): e967, 2021.
Article in English | MEDLINE | ID: mdl-34712888

ABSTRACT

INTRODUCTION: Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels mediate repetitive action potential firing in the heart and nervous system. The HCN2 isoform is expressed in nociceptors, and preclinical studies suggest a critical role in neuropathic pain. Ivabradine is a nonselective HCN blocker currently available for prescription for cardiac indications. Mouse data suggest that ivabradine in high concentrations is equianalgesic with gabapentin. We sought to translate these findings to patients with chronic peripheral neuropathic pain. OBJECTIVES: We sought to translate these findings to patients with chronic peripheral neuropathic pain. METHODS: We adopted an open-label design, administering increasing doses of ivabradine to target a heart rate of 50 to 60 BPM, up to a maximum of 7.5 mg twice daily. All participants scored their pain on an 11-point numerical rating scale (NRS). RESULTS: Seven (7) participants received the drug and completed the study. There was no significant treatment effect on the primary endpoint, the difference between the mean score at baseline and at maximum dosing (mean reduction = 0.878, 95% CI = -2.07 to 0.31, P = 0.1). Exploratory analysis using linear mixed models, however, revealed a highly significant correlation between ivabradine dose and pain scores (χ2(1) = 74.6, P < 0.001), with a reduction of 0.12 ± 0.01 (SEM) NRS points per milligram. The 2 participants with painful diabetic neuropathy responded particularly well. CONCLUSION: This suggests that ivabradine may be efficacious at higher doses, particularly in patients with diabetic neuropathic pain. Importantly, participants reported no adverse effects. These data suggest that ivabradine, a peripherally restricted drug (devoid of central nervous system side effects), is well tolerated in patients with chronic neuropathic pain. Ivabradine is now off-patent, and its analgesic potential merits further investigation in clinical trials.

9.
J Neurosci ; 41(38): 7954-7964, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34341156

ABSTRACT

Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the CNS. Myelin sheath length is a key property that determines axonal conduction velocity and is known to be variable across the CNS. Myelin sheath length can be modified by neuronal activity, suggesting that dynamic regulation of sheath length might contribute to the functional plasticity of neural circuits. Although the mechanisms that establish and refine myelin sheath length are important determinants of brain function, our understanding of these remains limited. In recent years, the membranes of myelin sheaths have been increasingly recognized to contain ion channels and transporters that are associated with specific important oligodendrocyte functions, including metabolic support of axons and the regulation of ion homeostasis, but none have been shown to influence sheath architecture. In this study, we determined that hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels, typically associated with neuronal and cardiac excitability, regulate myelin sheath length. Using both in vivo and in vitro approaches, we show that oligodendrocytes abundantly express functional, predominantly HCN2 subunit-containing ion channels. These HCN ion channels retain key pharmacological and biophysical features and regulate the resting membrane potential of myelinating oligodendrocytes. Further, reduction of their function via pharmacological blockade or generation of transgenic mice with two independent oligodendrocyte-specific HCN2 knock-out strategies reduced myelin sheath length. We conclude that HCN2 ion channels are key determinants of myelin sheath length in the CNS.SIGNIFICANCE STATEMENT Myelin sheath length is a critical determinant of axonal conduction velocity, but the signaling mechanisms responsible for determining sheath length are poorly understood. Here we find that oligodendrocytes express functional hyperpolarization-activated, cyclic nucleotide-gated 2 (HCN2) ion channels that regulate the length of myelin sheaths formed by oligodendrocytes in myelinating cultures and in the mouse brain and spinal cord. These results suggest that the regulation of HCN2 channel activity is well placed to refine sheath length and conduction along myelinated axons, providing a potential mechanism for alterations in conduction velocity and circuit function in response to axonal signals such as those generated by increased activity.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Prefrontal Cortex/metabolism , Animals , Axons/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Mice , Mice, Transgenic , Neural Conduction/physiology , Neurons/metabolism
10.
Sci Rep ; 11(1): 9339, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927223

ABSTRACT

Neutrophils must navigate accurately towards pathogens in order to destroy invaders and thus defend our bodies against infection. Here we show that hydrogen peroxide, a potent neutrophil chemoattractant, guides chemotaxis by activating calcium-permeable TRPM2 ion channels and generating an intracellular leading-edge calcium "pulse". The thermal sensitivity of TRPM2 activation means that chemotaxis towards hydrogen peroxide is strongly promoted by small temperature elevations, suggesting that an important function of fever may be to enhance neutrophil chemotaxis by facilitating calcium influx through TRPM2. Chemotaxis towards conventional chemoattractants such as LPS, CXCL2 and C5a does not depend on TRPM2 but is driven in a similar way by leading-edge calcium pulses. Other proposed initiators of neutrophil movement, such as PI3K, Rac and lyn, influence chemotaxis by modulating the amplitude of calcium pulses. We propose that intracellular leading-edge calcium pulses are universal drivers of the motile machinery involved in neutrophil chemotaxis.


Subject(s)
Chemotaxis , Neutrophils/physiology , TRPM Cation Channels/physiology , Animals , Hydrogen Peroxide , Mice, Inbred C57BL , Mice, Knockout
11.
Neurosci Lett ; 747: 135705, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33548408

ABSTRACT

Tinnitus has similarities to chronic neuropathic pain where there are changes in the firing rate of different types of afferent neurons. We postulated that one possible cause of tinnitus is a change in the distribution of spontaneous firing rates in at least one type of afferent auditory nerve fibre in anaesthetised guinea pigs. In control animals there was a bimodal distribution of spontaneous rates, but the position of the second mode was different depending upon whether the fibres responded best to high (> 4 kHz) or low (≤4 kHz) frequency tonal stimulation. The simplest and most reliable way of inducing tinnitus in experimental animals is to administer a high dose of sodium salicylate. The distribution of the spontaneous firing rates was different when salicylate (350 mg/kg) was administered, even when the sample was matched for the distribution of characteristic frequencies in the control population. The proportion of medium spontaneous rate fibres (MSR, 1≤ spikes/s ≤20) increased while the proportion of the highest, high spontaneous firing rate fibres (HSR, > 80 spikes/s) decreased following salicylate. The median rate fell from 64.7 spikes/s (control) to 35.4 spikes/s (salicylate); a highly significant change (Kruskal-Wallis test p < 0.001). When the changes were compared with various models of statistical probability, the most accurate model was one where most HSR fibres decreased their firing rate by 32 spikes/s. Thus, we have shown a reduction in the firing rate of HSR fibres that may be related to tinnitus.


Subject(s)
Auditory Cortex/drug effects , Auditory Threshold/drug effects , Cochlear Nerve/drug effects , Evoked Potentials, Auditory/drug effects , Salicylates/pharmacology , Action Potentials/physiology , Animals , Guinea Pigs
13.
Pain ; 161(9): 2155-2166, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32379221

ABSTRACT

ABSTRACT: Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. Persistent nociception without joint swelling was associated with low concentrations of the specialised proresolving LM Maresin 1 (MaR1) and high macrophage numbers in DRG. MaR1 application to cultured DRG neurons inhibited both capsaicin-induced increase of intracellular calcium ions and release of calcitonin gene-related peptide in a dose-dependent manner. Furthermore, in peritoneal macrophages challenged with lipopolysaccharide, MaR1 reduced proinflammatory cytokine expression. Systemic MaR1 administration caused sustained reversal of nociceptive hypersensitivity and reduced inflammatory macrophage numbers in DRG. Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.


Subject(s)
Ganglia, Spinal , Hyperalgesia , Animals , Calcitonin Gene-Related Peptide , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Macrophages , Mice , Pain
14.
J Physiol ; 597(17): 4661-4675, 2019 09.
Article in English | MEDLINE | ID: mdl-31290157

ABSTRACT

KEY POINTS: HCN ion channels conducting the Ih current control the frequency of firing in peripheral sensory neurons signalling pain. Previous studies have demonstrated a major role for the HCN2 subunit in chronic pain but the potential involvement of HCN3 in pain has not been investigated. HCN3 was found to be widely expressed in all classes of sensory neurons (small, medium, large) where it contributes to Ih . HCN3 deletion increased the firing rate of medium but not small, sensory neurons. Pain sensitivity both acutely and following neuropathic injury was largely unaffected by HCN3 deletion, with the exception of a small decrease of mechanical hyperalgesia in response to a pinprick. We conclude that HCN3 plays little role in either acute or chronic pain sensation. ABSTRACT: HCN ion channels govern the firing rate of action potentials in the pacemaker region of the heart and in pain-sensitive (nociceptive) nerve fibres. Intracellular cAMP promotes activation of the HCN4 and HCN2 isoforms, whereas HCN1 and HCN3 are relatively insensitive to cAMP. HCN2 modulates action potential firing rate in nociceptive neurons and plays a critical role in all modes of inflammatory and neuropathic pain, although the role of HCN3 in nociceptive excitability and pain is less studied. Using antibody staining, we found that HCN3 is expressed in all classes of somatosensory neurons. In small nociceptive neurons, genetic deletion of HCN2 abolished the voltage shift of the Ih current carried by HCN isoforms following cAMP elevation, whereas the voltage shift was retained following deletion of HCN3, consistent with the sensitivity of HCN2 but not HCN3 to cAMP. Deletion of HCN3 had little effect on the evoked firing frequency in small neurons but enhanced the firing of medium-sized neurons, showing that HCN3 makes a significant contribution to the input resistance only in medium-sized neurons. Genetic deletion of HCN3 had no effect on acute thresholds to heat or mechanical stimuli in vivo and did not affect inflammatory pain measured with the formalin test. Nerve-injured HCN3 knockout mice exhibited similar levels of mechanical allodynia and thermal hyperalgesia to wild-type mice but reduced mechanical hyperalgesia in response to a pinprick. These results show that HCN3 makes some contribution to excitability, particularly in medium-sized neurons, although it has no major influence on acute or neuropathic pain processing.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Membrane Potentials/physiology , Neuralgia/metabolism , Sensory Receptor Cells/metabolism , Animals , Cyclic AMP/metabolism , Female , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Fibers/metabolism , Nerve Fibers/physiology , Neuralgia/physiopathology , Nociceptors/metabolism , Nociceptors/physiology , Pain Measurement/methods , Pain Threshold/physiology
15.
Pflugers Arch ; 470(5): 787-798, 2018 05.
Article in English | MEDLINE | ID: mdl-29552700

ABSTRACT

The abilities to detect warmth and heat are critical for the survival of all animals, both in order to be able to identify suitable thermal environments for the many different activities essential for life and to avoid damage caused by extremes of temperature. Several ion channels belonging to the TRP family are activated by non-noxious warmth or by heat and are therefore plausible candidates for thermal detectors, but identifying those that actually regulate warmth and heat detection in intact animals has proven problematic. TRPM2 has recently emerged as a likely candidate for the detector of non-noxious warmth, as it is expressed in sensory neurons, and mice show deficits in the detection of warmth when TRPM2 is genetically deleted. TRPM2 is a chanzyme, containing a thermally activated TRP ion channel domain attached to a C-terminal motif, derived from a mitochondrial ADP ribose pyrophosphatase, that confers on the channel sensitivity to ADP ribose and reactive oxygen species such as hydrogen peroxide. Several open questions remain. Male mammals prefer cooler environments than female, but the molecular basis of this sex difference is unknown. TRPM2 plays a role in regulating body temperature, but are other warmth-detecting mechanisms also involved? TRPM2 is expressed in autonomic neurons, but does it confer a sensory function in addition to the well-known motor functions of autonomic neurons? TRPM2 is thought to play important roles in the immune system, in pain and in insulin secretion, but the mechanisms are unclear. TRPM2 has to date received less attention than many other members of the TRP family but is rapidly assuming importance both in normal physiology and as a key target in disease pathology.


Subject(s)
TRPM Cation Channels/metabolism , Thermosensing , Animals , Hot Temperature , Humans , TRPM Cation Channels/chemistry
16.
Sci Transl Med ; 9(409): eaam6072, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28954930

ABSTRACT

Diabetic patients frequently suffer from continuous pain that is poorly treated by currently available analgesics. We used mouse models of type 1 and type 2 diabetes to investigate a possible role for the hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels as drivers of diabetic pain. Blocking or genetically deleting HCN2 channels in small nociceptive neurons suppressed diabetes-associated mechanical allodynia and prevented neuronal activation of second-order neurons in the spinal cord in mice. In addition, we found that intracellular cyclic adenosine monophosphate (cAMP), a positive HCN2 modulator, is increased in somatosensory neurons in an animal model of painful diabetes. We propose that the increased intracellular cAMP drives diabetes-associated pain by facilitating HCN2 activation and consequently promoting repetitive firing in primary nociceptive nerve fibers. Our results suggest that HCN2 may be an analgesic target in the treatment of painful diabetic neuropathy.


Subject(s)
Diabetic Neuropathies/complications , Diabetic Neuropathies/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Pain/complications , Pain/metabolism , Potassium Channels/metabolism , Analgesics , Animals , Benzazepines/pharmacology , Benzazepines/therapeutic use , Cyclic AMP/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Disease Models, Animal , Gene Deletion , Hyperalgesia/complications , Hyperalgesia/drug therapy , Ivabradine , Nociception , Pain/drug therapy , Pain/pathology , Proto-Oncogene Proteins c-fos/metabolism , Sensory Receptor Cells/metabolism , Skin/innervation , Spinal Cord Dorsal Horn/metabolism , Streptozocin
17.
PLoS One ; 12(1): e0170097, 2017.
Article in English | MEDLINE | ID: mdl-28076424

ABSTRACT

The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1.


Subject(s)
Calcium Channels/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Nerve Tissue Proteins/physiology , Transient Receptor Potential Channels/physiology , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling/drug effects , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/physiology , Cymenes , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Monoterpenes/pharmacology , Mutagenesis, Site-Directed , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Patch-Clamp Techniques , Phosphorylation/drug effects , TRPA1 Cation Channel , Transfection , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
18.
Biochem J ; 473(18): 2717-36, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27621481

ABSTRACT

Nociception - the ability to detect painful stimuli - is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a 'pacemaker for pain', in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Neuralgia/metabolism , Humans
19.
Nature ; 536(7617): 460-3, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27533035

ABSTRACT

Thermally activated ion channels are known to detect the entire thermal range from extreme heat (TRPV2), painful heat (TRPV1, TRPM3 and ANO1), non-painful warmth (TRPV3 and TRPV4) and non-painful coolness (TRPM8) through to painful cold (TRPA1). Genetic deletion of each of these ion channels, however, has only modest effects on thermal behaviour in mice, with the exception of TRPM8, the deletion of which has marked effects on the perception of moderate coolness in the range 10-25 °C. The molecular mechanism responsible for detecting non-painful warmth, in particular, is unresolved. Here we used calcium imaging to identify a population of thermally sensitive somatosensory neurons which do not express any of the known thermally activated TRP channels. We then used a combination of calcium imaging, electrophysiology and RNA sequencing to show that the ion channel generating heat sensitivity in these neurons is TRPM2. Autonomic neurons, usually thought of as exclusively motor, also express TRPM2 and respond directly to heat. Mice in which TRPM2 had been genetically deleted showed a striking deficit in their sensation of non-noxious warm temperatures, consistent with the idea that TRPM2 initiates a 'warm' signal which drives cool-seeking behaviour.


Subject(s)
Hot Temperature , TRPM Cation Channels/metabolism , Animals , Avoidance Learning , Calcium/analysis , Calcium/metabolism , Calcium Signaling , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Sequence Analysis, RNA , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics
20.
J Physiol ; 594(22): 6643-6660, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27307078

ABSTRACT

KEY POINTS: The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in nociceptive neurons and its activation causes ongoing pain and inflammation; TRPA1 is thought to play an important role in inflammation in the airways. TRPA1 is sensitised by repeated stimulation with chemical agonists in a calcium-free environment and this sensitisation is very long lasting following agonist removal. We show that agonist-induced sensitisation is independent of the agonist's binding site and is also independent of ion channel trafficking or of other typical signalling pathways. We find that sensitisation is intrinsic to the TRPA1 protein and is accompanied by a slowly developing shift in the voltage dependence of TRPA1 towards more negative membrane potentials. Agonist-induced sensitisation may provide an explanation for sensitisation following long-term exposure to harmful irritants and pollutants, particularly in the airways. ABSTRACT: The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) neurons and responds to a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here we show that in the absence of extracellular calcium the current passing through TRPA1 gradually increases (sensitises) during prolonged application of agonists. Activation by an agonist is essential, because activation of TRPA1 by membrane depolarisation did not cause sensitisation. Sensitisation is independent of the site of action of the agonist, because covalent and non-covalent agonists were equally effective, and is long lasting following agonist removal. Mutating N-terminal cysteines, the target of covalent agonists, did not affect sensitisation by the non-covalent agonist carvacrol, which activates by binding to a different site. Sensitisation is unaffected by agents blocking ion channel trafficking or by block of signalling pathways involving ATP, protein kinase A or the formation of lipid rafts, and does not require ion flux through the channel. Examination of the voltage dependence of TRPA1 activation shows that sensitisation is accompanied by a slowly developing shift in the voltage dependence of TRPA1 towards more negative membrane potentials, and is therefore intrinsic to the TRPA1 channel. Sensitisation may play a role in exacerbating the pain caused by prolonged activation of TRPA1.


Subject(s)
Monoterpenes/pharmacology , Transient Receptor Potential Channels/agonists , Transient Receptor Potential Channels/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Cymenes , Female , Humans , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL