Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 114(Pt 22): 4073-81, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11739639

ABSTRACT

A number of genetic diseases, including cystic fibrosis, have been identified as disorders of protein trafficking associated with retention of mutant protein within the endoplasmic reticulum. In the presence of the benzo(c)quinolizinium drugs, MPB-07 and its congener MPB-91, we show the activation of cystic fibrosis transmembrane conductance regulator (CFTR) delF508 channels in IB3-1 human cells, which express endogenous levels of delF508-CFTR. These drugs were without effect on the Ca(2+)-activated Cl- transport, whereas the swelling-activated Cl- transport was found altered in MPB-treated cells. Immunoprecipitation and in vitro phosphorylation shows a 20% increase of the band C form of delF508 after MPB treatment. We then investigated the effect of these drugs on the extent of mislocalisation of delF508-CFTR in native airway cells from cystic fibrosis patients. We first showed that delF508 CFTR was characteristically restricted to an endoplasmic reticulum location in approximately 80% of untreated cells from CF patients homozygous for the delF508-CFTR mutation. By contrast, 60-70% of cells from non-CF patients showed wild-type CFTR in an apical location. MPB-07 treatment caused dramatic relocation of delF508-CFTR to the apical region such that the majority of delF508/delF508 CF cells showed a similar CFTR location to that of wild-type. MPB-07 had no apparent effect on the distribution of wild-type CFTR, the apical membrane protein CD59 or the ER membrane Ca(2+),Mg-ATPase. We also showed a similar pharmacological effect in nasal cells freshly isolated from a delF508/G551D CF patient. The results demonstrate selective redirection of a mutant membrane protein using cell-permeant small molecules of the benzo(c)quinolizinium family and provide a major advance towards development of a targetted drug treatment for cystic fibrosis and other disorders of protein trafficking.


Subject(s)
Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Quinolizines/pharmacology , Respiratory Mucosa/drug effects , Calcium/metabolism , Cell Polarity , Cells, Cultured , Cyclic AMP/agonists , Cyclic AMP/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Enzyme Inhibitors/pharmacology , Humans , Immunohistochemistry , Iodides/metabolism , Quinolizines/chemistry , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism
2.
Pflugers Arch ; 443 Suppl 1: S117-20, 2001.
Article in English | MEDLINE | ID: mdl-11845316

ABSTRACT

Wild-type and the DeltaF508 mutation of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR) were localised by confocal imaging in DeltaF508/DeltaF508 native airway epithelial cells using a well-characterised CFTR antibody. Surface nasal epithelial cells from three control and three CF individuals were obtained from nasal brushings. Cells were fixed, permeabilised and incubated with first antibody for 18 h at 4 degrees C. Following labelling with second antibody, cells were viewed with the confocal microscope. Wild-type CFTR was localised predominantly apically, whereas DeltaF508-CFTR was located mainly inside the cell in a region close to the nucleus. Incubation of cells with MPB-07 (250 microM) at 37 degrees C for 2 h resulted in pronounced movement of DeltaF508-CFTR to the cell periphery, but did not change the localisation of wild-type CFTR. The results show that DeltaF508-CFTR is mislocalised in native nasal epithelial cells and that its distribution is altered in response to the new CFTR activator, MPB-07. The findings should lead to development of a rational drug treatment for CF patients carrying the DeltaF508 mutation.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Epithelial Cells/chemistry , Nasal Mucosa/chemistry , Antibody Specificity , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/immunology , Humans , Microscopy, Confocal , Nasal Mucosa/cytology
3.
Pflugers Arch ; 443 Suppl 1: S121-6, 2001.
Article in English | MEDLINE | ID: mdl-11845317

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) mediates secretion of mucins and serous proteins. The aim was to correct pharmacologically the CFTR defect in protein secretion in airway gland cells and so to correct the viscous mucous secretions in cystic fibrosis (CF) airways and lungs. The strategies tested included direct activation of CFTR, bypass of CFTR-mediated protein secretion and movement of the mutated form of CFTR (DeltaF(508)-CFTR) to the cell membrane. Compounds related to 3-isobutyl-1-methylxanthine (IBMX), including a selective type-IV phosphodiesterase inhibitor and the adenosine receptor antagonists 8-cyclopentyltheophylline (CPT) and 8-cyclopentyl-1,3-dipropylxanthine (CPX), corrected the defective beta-adrenergic stimulation of mucin secretion in CFTR antibody-inhibited submandibular gland cells. CPT also corrected lactoferrin secretion in DeltaF(508)/DeltaF(508)-CFTR nasal gland cells. The data suggest that correction of CFTR protein secretion activity is not mediated by excessive increase in cyclic AMP, involves direct interaction with CFTR but does not require increase in CFTR Cl(-) channel activity. Regulated glycoprotein secretion was characterised in the airway gland cell line Calu-3 to investigate whether a CFTR bypass is present. Studies of DeltaF(508)-CFTR trafficking using confocal imaging showed that some DeltaF(508)-CFTR colocalised with the apical membrane protein CD59; however a large amount was mislocalised within the cell. The results showing pharmacological correction of the defective CFTR-mediated protein secretion afford promise for the development of a rational drug therapy for CF patients.


Subject(s)
Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Enzyme Inhibitors/pharmacology , Theophylline/analogs & derivatives , Thionucleotides/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Humans , Isoproterenol/pharmacology , Lactoferrin/metabolism , Mucins/metabolism , Nasal Mucosa/chemistry , Nasal Mucosa/metabolism , Rats , Submandibular Gland/metabolism , Theophylline/pharmacology
4.
Am J Physiol Cell Physiol ; 279(6): C1925-37, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11078708

ABSTRACT

The pharmacological activation of the cystic fibrosis gene protein cystic fibrosis transmembrane conductance regulator (CFTR) was studied in human airway epithelial Calu-3 cells, which express a high level of CFTR protein as assessed by Western blot and in vitro phosphorylation. Immunolocalization shows that CFTR is located in the apical membrane. We performed iodide efflux, whole cell patch-clamp, and short-circuit recordings to demonstrate that the novel synthesized xanthine derivative 3, 7-dimethyl-1-isobutylxanthine (X-33) is an activator of the CFTR channel in Calu-3 cells. Whole cell current activated by X-33 or IBMX is linear, inhibited by glibenclamide and diphenylamine-2-carboxylate but not by DIDS or TS-TM calix[4]arene. Intracellular cAMP was not affected by X-33. An outwardly rectifying Cl(-) current was recorded in the absence of cAMP and X-33 stimulation, inhibited by DIDS and TS-TM calix[4]arene. With the use of short-circuit recordings, X-33 and IBMX were able to stimulate a large concentration-dependent CFTR transport that was blocked by glibenclamide but not by DIDS. Our results show that manipulating the chemical structure of xanthine derivatives offers an opportunity to identify further specific activators of CFTR in airway cells.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Theophylline/analogs & derivatives , Xanthines/pharmacology , 1-Methyl-3-isobutylxanthine/pharmacology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Animals , Biological Transport/drug effects , Biological Transport/physiology , CHO Cells , Caffeine/pharmacology , Calcium Channel Blockers/pharmacology , Chlorides/metabolism , Colforsin/pharmacology , Cricetinae , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , In Vitro Techniques , Iodides/pharmacokinetics , Iodine Radioisotopes , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Proteins/metabolism , Patch-Clamp Techniques , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation , Respiratory Mucosa/physiology , Theophylline/pharmacology , Xanthines/chemical synthesis , ortho-Aminobenzoates/pharmacology
5.
J Anat ; 189 ( Pt 3): 593-600, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8982835

ABSTRACT

Tendons respond to mechanical load by modifying their extracellular matrix. The cells therefore sense mechanical load and coordinate an appropriate response to it. We show that tendon cells have the potential to communicate with one another via cell processes and gap junctions and thus could use direct cell/cell communication to detect and/or coordinate their load responses. Unfixed cryosections of adult rat digital flexor tendons were stained with the fluorescent membrane dye DiI to demonstrate cell shape. Similar sections were immunolabelled with monoclonal antibodies to rat connexin 32 or connexin 43 to demonstrate gap junctions and counterstained with propidium iodide to show nuclei, or the membrane stain DiOC7 to show cell membranes. Sections were examined with a laser scanning confocal microscope and 3-dimensional reconstructions were prepared from optical section series to demonstrate cell shape and the position of connexin immunolabel. Cells had a complex interconnected morphology with gap junctions at points of contact with other cells. Cell bodies contained the nucleus and extended broad flat lateral cell processes that enclosed collagen bundles and interacted with similar processes from adjacent cells. They also had long thin longitudinal processes interacting with the cell process network further along the tendon. Connexin 43 occurred where cell processes met and between cell bodies, whereas connexin 32 was only found between cell bodies. The results indicate the presence of a 3-dimensional communicating network of cell processes within tendons. The intimate relationship between cell processes and collagen fibril bundles suggests that the cell process network could be involved in load sensing and coordination of response to load. The presence of 2 different types of connexins suggests that there could be at least 2 distinct communicating networks.


Subject(s)
Cell Communication/physiology , Gap Junctions/ultrastructure , Tendons/cytology , Animals , Cells, Cultured , Collagen/analysis , Computer Simulation , Connexin 43/analysis , Connexins/analysis , Female , Fluorescent Antibody Technique , Male , Microscopy, Confocal , Models, Biological , Rats , Rats, Wistar , Stress, Mechanical , Tendons/chemistry , Tendons/ultrastructure , Gap Junction beta-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...