Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Metab Dispos ; 28(2): 192-204, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10640518

ABSTRACT

The retention, distribution, metabolism, and excretion of [(14)C]octamethylcyclotetrasiloxane (D(4)) were studied in Fischer 344 rats after single and multiple exposures to 7, 70, or 700 ppm [(14)C]D(4). Subset groups were established for body burden, distribution, and elimination. Retention of inhaled D(4) was relatively low (5-6% of inhaled D(4)). Radioactivity derived from [(14)C]D(4) inhalation was widely distributed to tissues of the rat. Maximum concentrations of radioactivity in plasma and tissues (except fat) occurred at the end of exposure and up to 3 h postexposure. Maximum concentrations of radioactivity in fat occurred as late as 24 h postexposure. Fat was a depot, elimination of radioactivity from this tissue was much slower than from plasma and other tissues. With minor exceptions, there were no consistent gender effects on the distribution of radioactivity and the concentrations of radioactivity were nearly proportional to exposure concentration over the exposure range. Excretion of radioactivity was via exhaled breath and urine, and, to a much lesser extent, feces. Urinary metabolites included dimethylsilanediol and methylsilanetriol plus five minor metabolites. Relative abundance of these metabolites was the same from every test group. Elimination was rapid during the first 24 h after exposure and was slower thereafter (measured up to 168 h postexposure). In singly-exposed female (but not male) rats, small dose-dependent shifts in elimination pathways were seen. After multiple exposures, the elimination pathways were dose- and gender-independent. These data define possible pathways for metabolism of D(4) and allow estimation of the persistence of D(4) and/or its metabolites in rats.


Subject(s)
Siloxanes/pharmacokinetics , Administration, Inhalation , Animals , Area Under Curve , Atmosphere Exposure Chambers , Body Burden , Female , Half-Life , Male , Rats , Rats, Inbred F344 , Respiratory Function Tests , Sex Characteristics , Siloxanes/administration & dosage , Tissue Distribution
2.
J Anal Toxicol ; 23(1): 35-40, 1999.
Article in English | MEDLINE | ID: mdl-10022207

ABSTRACT

A rapid and sensitive semiautomated method was developed for quantitation of the chlorpyrifos metabolite 3,5,6-trichloro-2-pyridinol (TCP) in human urine. A Zymark Zymate XP laboratory robotics system was used to mix urine samples, transfer aliquots, add the stable-isotope-labeled TCP internal standard (13C2- or 13C2,15N-), and liberate conjugates of TCP from urine via acid hydrolysis. Samples were manually extracted into toluene, derivatized, and analyzed by gas chromatography-negative-ion chemical ionization mass spectrometry. Determination of the metabolic TCP was performed by selected ion monitoring of the dichloropyridinol fragment ions: m/z 161 for TCP and m/z 165 for 13C2-TCP or m/z 168 for 13C2,15N-TCP. Interday precision and accuracy were demonstrated over 3 years of analyses using the 13C2-TCP internal standard, with an average recovery from fortified urine samples of 93+/-12% (N = 54, concentration range 1-140 ng/mL). The method was found to be linear over the range of 0.5 to 200 ng/mL, and the limit of detection for TCP in urine was estimated to be 0.2 ng/mL with a limit of quantitation of 1 ng/mL. The effect of solids distribution on the concentration of TCP in the thawed urine samples was examined, and the results indicated that homogeneous distribution is critical for quantitation. The precision and accuracy of the automated method with respect to the transfer of homgeneous urine aliquots and delivery of internal standard yielded equivalent or improved results over the manual techniques. Overall, this method is more simple than existing methodologies, and it yields results with improved precision, accuracy, and sensitivity over previously developed methods.


Subject(s)
Automation/methods , Gas Chromatography-Mass Spectrometry , Herbicides/urine , Pyridones/urine , Robotics/methods , Humans , Sensitivity and Specificity
3.
Toxicol Appl Pharmacol ; 150(2): 402-13, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9653072

ABSTRACT

ortho-Phenylphenol (OPP), a fungicide and antibacterial agent with food residues, is carcinogenic to rat bladder. The present studies provide information on changes in urinary composition and urinary metabolites, urothelial cytotoxicity and regenerative hyperplasia, and DNA adducts in male F344 rats fed OPP. An initial experiment evaluated dietary doses of 0, 1,000, 4,000, and 12,500 ppm OPP fed for 13 weeks. There was no evidence of urinary calculi, microcrystalluria, or calcium phosphate-containing precipitate, but urothelial cytotoxicity and hyperplasia occurred at the highest dose only. In a second experiment, rats were fed dietary OPP levels of 0, 800, 4,000, 8,000, and 12,500 ppm. Urinary pH was > 7 in all groups. Urinary volume was increased at the 2 highest doses with consequent decreases in osmolality, creatinine, and other solutes. Total urinary OPP metabolite excretions were increased, mostly excreted as conjugates of OPP and of phenylhydroquinone. Free OPP or free metabolites accounted for less than 2% excreted in the urine without a dose response. Urothelial toxicity and hyperplasia occurred only at doses of 8,000 and 12,500 ppm. OPP-DNA adducts were not detected in the urothelium at any dose. In summary, OPP produces cytotoxicity and proliferation of the urothelium at dietary doses > or = 8,000 ppm without formation of urinary solids. The paucity of unconjugated metabolites and the lack of OPP-DNA adducts suggests that OPP is acting as a bladder carcinogen in male rats by inducing cytotoxicity and hyperplasia without it or its metabolites directly binding to DNA.


Subject(s)
Biphenyl Compounds/toxicity , Carcinogens/toxicity , Fungicides, Industrial/toxicity , Urinary Bladder/drug effects , Administration, Oral , Animals , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/urine , DNA Adducts/biosynthesis , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Fungicides, Industrial/administration & dosage , Fungicides, Industrial/urine , Hyperplasia/chemically induced , Male , Rats , Rats, Inbred F344 , Urinary Bladder/metabolism , Urinary Bladder/ultrastructure , Urinary Bladder Neoplasms/chemically induced , Urothelium/drug effects , Urothelium/metabolism , Urothelium/ultrastructure
4.
Xenobiotica ; 28(6): 579-94, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9667081

ABSTRACT

1. Ortho-phenylphenol (OPP) was well absorbed in the male B6C3F1 mouse, with 84 and 98% of the administered radioactivity recovered in the 0-48-h urine of animals administered a single oral dose of 15 or 800 mg/kg respectively. High absorption and rapid elimination were also seen in the female and male F344 rat with 86 and 89% respectively of a single oral dose (27-28 mg/kg) found in the urine in 24 h. OPP was also rapidly eliminated from human volunteers following dermal exposure for 8 h (0.006 mg/kg), with 99% of the absorbed dose in the urine in 48 h. 2. Sulphation of OPP was found to be the major metabolic pathway at low doses in all three species, accounting for 57, 82 and 69% of the urinary radioactivity in the male mouse (15 mg/kg, p.o.), male rat (28 mg/kg, p.o.) and male human volunteers (0.006 mg/kg, dermal). OPP-glucuronide was also present in all species, representing 29, 7 and 4% of the total urinary metabolites in the low dose groups of mouse, rat and human volunteers respectively. 3. Conjugates of 2-phenylhydroquinone (PHQ) in these single-dose studies accounted for 12, 5 and 15% of the dose in mouse, rat and human, respectively. Little or no free OPP was found in any species. No free PHQ or PBQ was found in the mouse, rat or human (LOD = 0.1-0.6%). 4. A novel metabolite, the sulphate conjugate of 2,4'-dihydroxybiphenyl, was identified in rat and man, comprising 3 and 13% of the low dose respectively. 5. Dose-dependent shifts in metabolism were seen in the mouse for conjugation of parent OPP, indicating saturation of the sulphation pathway. Dose-dependent increases in total PHQ were also observed in mouse. 6. This study was initiated to elucidate a mechanistic basis for the difference in carcinogenic potential for OPP between rat and mouse. However, the minor differences seen in the metabolism of OPP in these two species do not appear to account for the differences in urinary bladder toxicity and tumour response between mouse and rat.


Subject(s)
Biphenyl Compounds/pharmacokinetics , Carcinogens/pharmacokinetics , Animals , Biotransformation , Biphenyl Compounds/urine , Carbon Radioisotopes , Chromatography, High Pressure Liquid , Female , Gas Chromatography-Mass Spectrometry , Glucuronates/urine , Humans , Intestinal Absorption , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred F344 , Species Specificity , Spectrometry, Mass, Secondary Ion
SELECTION OF CITATIONS
SEARCH DETAIL