Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol Sci ; 138(1): 3-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24361871

ABSTRACT

Novel urinary kidney safety biomarkers have been identified recently that may outperform or add value to the conventional renal function biomarkers, blood urea nitrogen (BUN) and serum creatinine (SCr). To assess the relative performance of the growing list of novel biomarkers, a comprehensive evaluation was conducted for 12 urinary biomarkers in 22 rat studies including 12 kidney toxicants and 10 compounds with toxicities observed in organs other than kidney. The kidney toxicity studies included kidney tubular toxicants and glomerular toxicants. The 12 urinary biomarkers evaluated included Kim-1, clusterin, osteopontin, osteoactivin, albumin, lipocalin-2, GST-α, ß2-microglobulin, cystatin C, retinol binding protein 4, total protein, and N-acetyl-ß-D-glucosaminidase. Receiver operator characteristic (ROC) curves were generated for each biomarker and for BUN and SCr to compare the relative performance of the 12 biomarkers in individual animals against the microscopic histomorphologic changes observed in the kidney. Among the kidney toxicity biomarkers analyzed, Kim-1, clusterin, and albumin showed the highest overall performance for detecting drug-induced renal tubular injury in the rat in a sensitive and specific manner, whereas albumin showed the highest performance in detecting drug-induced glomerular injury. Although most of the evaluated kidney biomarkers were more sensitive in detecting kidney toxicity compared with BUN and SCr, all biomarkers demonstrated some lack of specificity, most notably NGAL and osteopontin, illustrating the need for caution when interpreting urinary biomarker increases in rat samples when organ toxicity is unknown.


Subject(s)
Biomarkers/urine , Kidney Diseases/chemically induced , Kidney Diseases/urine , Kidney/drug effects , Toxicity Tests , Animals , Enzyme-Linked Immunosorbent Assay , Female , Kidney/pathology , Kidney Diseases/blood , Kidney Diseases/pathology , Limit of Detection , Male , ROC Curve , Rats , Rats, Sprague-Dawley , Rats, Wistar
2.
Mol Carcinog ; 49(1): 54-67, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20025072

ABSTRACT

Rodents, mice and rats in particular, are the species of choice for evaluating chemical carcinogenesis. However, different species and strains often respond very differently, undermining the logic of extrapolation of animal results to humans and complicating risk assessment. Intracisternal A particles (IAPs), endogenous retroviral sequences, are an important class of transposable elements that induce genomic mutations and cell transformation by disrupting gene expression. Several lines of evidence support a role of IAPs as mouse-specific genetic factors in responses to toxicity and expression of disease phenotypes. Since multiple subtypes and copies of IAPs are present in the mouse genome, their activity and locations relative to functional genes are of critical importance. This study identified the major "active" subtypes of IAPs (subtype 1/1a) that are responsible for newly transposed IAP insertions described in the literature, and confirmed that (1) polymorphisms for IAP insertions exist among different mouse strains and (2) promoter activity of the LTRs can be modulated by chemicals. This study further identified all the genes in the C57BL/6 mouse genome with IAP subtype 1 and 1a sequences inserted in their proximity, and the major biofunctional categories and cellular signaling networks of those genes. Since many "IAP-associated genes" play important roles in the regulation of cell proliferation, cell cycle, and cell death, the associated IAPs, upon activation, can affect cellular responses to xenobiotics and disease processes, especially carcinogenesis. This systemic analysis provides a solid foundation for further investigations of the role of IAPs as species- and strain-specific disease susceptibility factors.


Subject(s)
Genes, Intracisternal A-Particle/genetics , Genome/genetics , Mice/genetics , Neoplasms/genetics , Animals , Base Sequence , COS Cells , Cell Line , Chlorocebus aethiops , Gene Regulatory Networks , Genetic Predisposition to Disease/genetics , Genetic Variation , Genomics/methods , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred Strains , Molecular Sequence Data , Mutagenesis, Insertional , Phylogeny , Polymorphism, Genetic , Sequence Homology, Nucleic Acid , Species Specificity
3.
Bioorg Med Chem Lett ; 16(9): 2479-83, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16464591

ABSTRACT

Compounds 10a (IC50 110 pM) and 21 (IC50 40 pM) are the most potent inhibitors of Eimeria tenella cGMP-dependent protein kinase activity reported to date and are efficacious in the in vivo antiparasitic assay when administered to chickens at 12.5 and 6.25 ppm levels in the feed. However, both compounds are positive in the Ames microbial mutagenesis assay which precludes them from further development as antiprotozoal agents in the absence of negative lifetime rodent carcinogenicity studies.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Eimeria tenella/drug effects , Enzyme Inhibitors/chemical synthesis , Imidazoles/chemical synthesis , Pyridines/chemical synthesis , Animal Feed , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Chickens , Coccidiosis/drug therapy , Eimeria tenella/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Male , Molecular Structure , Mutagenicity Tests , Oocysts/drug effects , Parasitic Sensitivity Tests , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL