Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Ecol Evol ; 14(4): e11217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628916

ABSTRACT

While territoriality is one of the key mechanisms influencing carnivore space use, most studies quantify resource selection and movement in the absence of conspecific influence or territorial structure. Our analysis incorporated social information in a resource selection framework to investigate mechanisms of territoriality and intra-specific competition on the habitat selection of a large, social carnivore. We fit integrated step selection functions to 3-h GPS data from 12 collared African wild dog packs in the Okavango Delta and estimated selection coefficients using a conditional Poisson likelihood with random effects. Packs selected for their neighbors' 30-day boundary (defined as their 95% kernel density estimate) and for their own 90-day core (defined as their 50% kernel density estimate). Neighbors' 30-day boundary had a greater influence on resource selection than any habitat feature. Habitat selection differed when they were within versus beyond their neighbors' 30-day boundary. Pack size, pack tenure, pup presence, and seasonality all mediated how packs responded to neighbors' space use, and seasonal dynamics altered the strength of residency. While newly-formed packs and packs with pups avoided their neighbors' boundary, older packs and those without pups selected for it. Packs also selected for the boundary of larger neighboring packs more strongly than that of smaller ones. Social structure within packs has implications for how they interact with conspecifics, and therefore how they are distributed across the landscape. Future research should continue to investigate how territorial processes are mediated by social dynamics and, in turn, how territorial structure mediates resource selection and movement. These results could inform the development of a human-wildlife conflict (HWC) mitigation tool by co-opting the mechanisms of conspecific interactions to manage space use of endangered carnivores.

3.
Ecol Evol ; 14(4): e11298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38638370

ABSTRACT

Remote monitoring of communal marking sites, or latrines, provides a unique opportunity to observe undisturbed scent marking behaviour of African wild dogs (Lycaon pictus). We used remote camera trap observations in a natural experiment to test behavioural scent mark responses to rivals (either familiar neighbours or unfamiliar strangers), to determine whether wild dogs exhibit the "dear enemy" or "nasty neighbour" response. Given that larger groups of wild dogs represent a greater threat to smaller groups, including for established residents, we predicted that the overarching categories "dear enemy" vs. "nasty neighbour" may be confounded by varying social statuses that exists between individual dyads interacting. Using the number of overmarks as a metric, results revealed an interaction between sender and receiver group size irrespective of familiarity consistent with this prediction: in general, individuals from large resident packs overmarked large groups more than they overmarked smaller groups, whereas individuals from smaller packs avoided overmarking larger groups, possibly to avoid detection. Monitoring a natural system highlights variables such as pack size that may be either overlooked or controlled during scent presentation experiments, influencing our ability to gain insights into the factors determining territorial responses to rivals.

4.
Ecol Evol ; 11(13): 8495-8506, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257912

ABSTRACT

The impacts of high ambient temperatures on mortality in humans and domestic animals are well-understood. However much less is known about how hot weather affects mortality in wild animals. High ambient temperatures have been associated with African wild dog Lycaon pictus pup mortality, suggesting that high temperatures might also be linked to high adult mortality.We analyzed mortality patterns in African wild dogs radio-collared in Kenya (0°N), Botswana (20°S), and Zimbabwe (20°S), to examine whether ambient temperature was associated with adult mortality.We found that high ambient temperatures were associated with increased adult wild dog mortality at the Kenya site, and there was some evidence for temperature associations with mortality at the Botswana and Zimbabwe sites.At the Kenya study site, which had the highest human impact, high ambient temperatures were associated with increased risks of wild dogs being killed by people, and by domestic dog diseases. In contrast, temperature was not associated with the risk of snare-related mortality at the Zimbabwe site, which had the second-highest human impact. Causes of death varied markedly between sites.Pack size was positively associated with survival at all three sites.These findings suggest that while climate change may not lead to new causes of mortality, rising temperatures may exacerbate existing anthropogenic threats to this endangered species, with implications for conservation. This evidence suggests that temperature-related mortality, including interactions between temperature and other anthropogenic threats, should be investigated in a greater number of species to understand and mitigate likely impacts of climate change. ​.

5.
Ecol Evol ; 9(4): 1654-1664, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847062

ABSTRACT

In recent years, there have been significant advances in the technology used to collect data on the movement and activity patterns of humans and animals. GPS units, which form the primary source of location data, have become cheaper, more accurate, lighter and less power-hungry, and their accuracy has been further improved with the addition of inertial measurement units. The consequence is a glut of geospatial time series data, recorded at rates that range from one position fix every several hours (to maximize system lifetime) to ten fixes per second (in high dynamic situations). Since data of this quality and volume have only recently become available, the analytical methods to extract behavioral information from raw position data are at an early stage of development. An instance of this lies in the analysis of animal movement patterns. When investigating solitary animals, the timing and location of instances of avoidance and association are important behavioral markers. In this paper, a novel analytical method to detect avoidance and association between individuals is proposed; unlike existing methods, assumptions about the shape of the territories or the nature of individual movement are not needed. Simulations demonstrate that false positives (type I error) are rare (1%-3%), which means that the test rarely suggests that there is an association if there is none.

6.
Proc Biol Sci ; 285(1877)2018 04 25.
Article in English | MEDLINE | ID: mdl-29695443

ABSTRACT

Although leopards are the most widespread of all the big cats and are known for their adaptability, they are elusive and little is known in detail about their movement and hunting energetics. We used high-resolution GPS/IMU (inertial measurement unit) collars to record position, activity and the first high-speed movement data on four male leopards in the Okavango Delta, an area with high habitat diversity and habitat fragmentation. Leopards in this study were generally active and conducted more runs during the night, with peaks in activity and number of runs in the morning and evening twilight. Runs were generally short (less than 100 m) and relatively slow (maximum speed 5.3 m s-1, mean of individual medians) compared to other large predators. Average daily travel distance was 11 km and maximum daily travel distance was 29 km. No direct correlation was found between average daily temperature and travel distance or between season and travel distance. Total daily energy requirements based on locomotor cost and basal metabolic rate varied little between individuals and over time. This study provides novel insights into movement patterns and athletic performance of leopards through quantitative high-resolution measurement of the locomotor, energetic, spatial and temporal movement characteristics. The results are unbiased by methodological and observational limitations characteristic of previous studies and demonstrate the utility of applying new technologies to field studies of elusive nocturnal species.


Subject(s)
Energy Metabolism , Movement , Panthera/physiology , Territoriality , Animals , Botswana , Geographic Information Systems , Male , Physical Conditioning, Animal , Running , Spatial Analysis
7.
Nature ; 554(7691): 183-188, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29364874

ABSTRACT

The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.


Subject(s)
Acinonyx/psychology , Equidae/physiology , Lions/physiology , Predatory Behavior/physiology , Ruminants/physiology , Acceleration , Animals , Botswana , Female , Male , Muscle, Skeletal/physiology , Running/physiology
8.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28878054

ABSTRACT

In despotically driven animal societies, one or a few individuals tend to have a disproportionate influence on group decision-making and actions. However, global communication allows each group member to assess the relative strength of preferences for different options among their group-mates. Here, we investigate collective decisions by free-ranging African wild dog packs in Botswana. African wild dogs exhibit dominant-directed group living and take part in stereotyped social rallies: high energy greeting ceremonies that occur before collective movements. Not all rallies result in collective movements, for reasons that are not well understood. We show that the probability of rally success (i.e. group departure) is predicted by a minimum number of audible rapid nasal exhalations (sneezes), within the rally. Moreover, the number of sneezes needed for the group to depart (i.e. the quorum) was reduced whenever dominant individuals initiated rallies, suggesting that dominant participation increases the likelihood of a rally's success, but is not a prerequisite. As such, the 'will of the group' may override dominant preferences when the consensus of subordinates is sufficiently great. Our findings illustrate how specific behavioural mechanisms (here, sneezing) allow for negotiation (in effect, voting) that shapes decision-making in a wild, socially complex animal society.


Subject(s)
Behavior, Animal , Canidae/physiology , Decision Making , Sneezing , Social Behavior , Animals , Animals, Wild/physiology , Botswana , Movement
9.
J Anim Ecol ; 86(6): 1329-1338, 2017 10.
Article in English | MEDLINE | ID: mdl-28726288

ABSTRACT

Climate change imposes an urgent need to recognise and conserve the species likely to be worst affected. However, while ecologists have mostly explored indirect effects of rising ambient temperatures on temperate and polar species, physiologists have predicted direct impacts on tropical species. The African wild dog (Lycaon pictus), a tropical species, exhibits few of the traits typically used to predict climate change vulnerability. Nevertheless, we predicted that wild dog populations might be sensitive to weather conditions, because the species shows strongly seasonal reproduction across most of its geographical range. We explored associations between weather conditions, reproductive costs, and reproductive success, drawing on long-term wild dog monitoring data from sites in Botswana (20°S, 24 years), Kenya (0°N, 12 years), and Zimbabwe (20°S, 6 years). High ambient temperatures were associated with reduced foraging time, especially during the energetically costly pup-rearing period. Across all three sites, packs which reared pups at high ambient temperatures produced fewer recruits than did those rearing pups in cooler weather; at the non-seasonal Kenya site such packs also had longer inter-birth intervals. Over time, rising ambient temperatures at the (longest-monitored) Botswana site coincided with falling wild dog recruitment. Our findings suggest a direct impact of high ambient temperatures on African wild dog demography, indicating that this species, which is already globally endangered, may be highly vulnerable to climate change. This vulnerability would have been missed by simplistic trait-based assessments, highlighting the limitations of such assessments. Seasonal reproduction, which is less common at low latitudes than at higher latitudes, might be a useful indicator of climate change vulnerability among tropical species.


Subject(s)
Canidae/physiology , Climate Change , Hot Temperature/adverse effects , Reproduction , Animals , Botswana , Kenya , Tropical Climate , Zimbabwe
10.
Mov Ecol ; 5: 10, 2017.
Article in English | MEDLINE | ID: mdl-28417004

ABSTRACT

BACKGROUND: Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog (Lycaon pictus) packs varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and pack size, remain unclear. We used movement data from 21 wild dog packs to calculate the extent of territory overlap (20 dyads). RESULTS: On average, unrelated neighbouring packs had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit area within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related packs spent significantly more time in their 95% kernel overlap zones than did unrelated packs. Pack size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger packs tended to overlap more onto smaller packs' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. CONCLUSIONS: Evidence suggests that costly intraspecific aggression is greatly reduced between related packs. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-pack to inter-pack level. This natural spacing system can affect survival parameters and the carrying capacity of protected areas, having important management implications for intensively managed populations of this endangered species.

11.
J Exp Biol ; 220(Pt 3): 341-346, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27811292

ABSTRACT

Changes in stride frequency and length with speed are key parameters in animal locomotion research. They are commonly measured in a laboratory on a treadmill or by filming trained captive animals. Here, we show that a clustering approach can be used to extract these variables from data collected by a tracking collar containing a GPS module and tri-axis accelerometers and gyroscopes. The method enables stride parameters to be measured during free-ranging locomotion in natural habitats. As it does not require labelled data, it is particularly suitable for use with difficult to observe animals. The method was tested on large data sets collected from collars on free-ranging lions and African wild dogs and validated using a domestic dog.


Subject(s)
Animals, Wild/physiology , Dogs/physiology , Lions/physiology , Locomotion , Accelerometry , Animals , Cluster Analysis , Ecosystem , Female , Gait , Geographic Information Systems , Machine Learning , Male
12.
Nat Commun ; 7: 11033, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27023355

ABSTRACT

African wild dogs (Lycaon pictus) are described as highly collaborative endurance pursuit hunters based on observations derived primarily from the grass plains of East Africa. However, the remaining population of this endangered species mainly occupies mixed woodland savannah where hunting strategies appear to differ from those previously described. We used high-resolution GPS and inertial technology to record fine-scale movement of all members of a single pack of six adult African wild dogs in northern Botswana. The dogs used multiple short-distance hunting attempts with a low individual kill rate (15.5%), but high group feeding rate due to the sharing of prey. Use of high-level cooperative chase strategies (coordination and collaboration) was not recorded. In the mixed woodland habitats typical of their current range, simultaneous, opportunistic, short-distance chasing by dogs pursuing multiple prey (rather than long collaborative pursuits of single prey by multiple individuals) could be the key to their relative success in these habitats.


Subject(s)
Animals, Wild/physiology , Dogs/physiology , Predatory Behavior/physiology , Africa, Eastern , Animals , Female , Geographic Information Systems , Leadership , Male , Plants , Running
13.
Nat Commun ; 7: 11034, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27023457

ABSTRACT

African wild dogs (Lycaon pictus) are reported to hunt with energetically costly long chase distances. We used high-resolution GPS and inertial technology to record 1,119 high-speed chases of all members of a pack of six adult African wild dogs in northern Botswana. Dogs performed multiple short, high-speed, mostly unsuccessful chases to capture prey, while cheetahs (Acinonyx jubatus) undertook even shorter, higher-speed hunts. We used an energy balance model to show that the energy return from group hunting and feeding substantially outweighs the cost of multiple short chases, which indicates that African wild dogs are more energetically robust than previously believed. Comparison with cheetah illustrates the trade-off between sheer athleticism and high individual kill rate characteristic of cheetahs, and the energetic robustness of frequent opportunistic group hunting and feeding by African wild dogs.


Subject(s)
Acinonyx/physiology , Animals, Wild/physiology , Dogs/physiology , Energy Metabolism/physiology , Predatory Behavior/physiology , Africa , Animals , Basal Metabolism , Female , Male , Models, Biological , Movement , Running
14.
PLoS One ; 10(3): e0121471, 2015.
Article in English | MEDLINE | ID: mdl-25793976

ABSTRACT

Human-related food resources such as garbage dumps and feeding sites have been shown to significantly influence space use, breeding success and population dynamics in a variety of animal species. In contrast, relatively little is known on the effects of unpredictable sources of food, such as carcasses discarded by hunters, on carnivore species. We evaluated the effect of elephant carcasses, mainly deriving from trophy hunting, on the ranging and feeding behavior of spotted hyenas (Crocuta crocuta) in the Okavango Delta, Botswana. Using data from hyenas monitored before and during carcass availability via GPS radio-collars and camera traps, we investigated changes in ranging and feeding behavior over time. Carcass availability influenced hyenas' ranging behavior for an average of 10-12 days, after which their movements returned to patterns observed before carcass availability. In particular, we observed an increased spatial clustering of locations and reduced speeds (up to 15% less) between successive locations with carcass availability. Consistent feeding at carcasses during the first two weeks was typical, and some individuals fed from elephant carcasses for as long as 50 days. The impact and conservation value of hunting are often assessed based solely on the effects on the hunted species. Our results show that hunting remains can influence other species and suggest that such extra food could have important effects on critical life history processes and ultimately population dynamics. We recommend conservationists and wildlife managers evaluate management strategies and hunting practices regarding carcass disposal in order to incorporate the potential collateral impacts of hunting on non-hunted species in the same community.


Subject(s)
Carnivory/physiology , Hyaenidae/physiology , Animals , Botswana , Elephants , Geography , Meat , Movement , Photography
15.
J Anim Ecol ; 82(3): 707-15, 2013 May.
Article in English | MEDLINE | ID: mdl-23402594

ABSTRACT

1. Physical barriers contribute to habitat fragmentation, influence species distribution and ranging behaviour, and impact long-term population viability. Barrier permeability varies among species and can potentially impact the competitive balance within animal communities by differentially affecting co-occurring species. The influence of barriers on the spatial distribution of species within whole communities has nonetheless received little attention. 2. During a 4-year period, we studied the influence of a fence and rivers, two landscape features that potentially act as barriers on space use and ranging behaviour of lions Panthera leo, spotted hyenas Crocuta crocuta, African wild dogs Lycaon pictus and cheetahs Acinonyx jubatus in Northern Botswana. We compared the tendencies of these species to cross the barriers using data generated from GPS-radio collars fitted to a total of 35 individuals. Barrier permeability was inferred by calculating the number of times animals crossed a barrier vs. the number of times they did not cross. Finally, based on our results, we produced a map of connectivity for the broader landscape system. 3. Permeability varied significantly between fence and rivers and among species. The fence represented an obstacle for lions (permeability = 7.2%), while it was considerably more permeable for hyenas (35.6%) and wild dogs and cheetahs (≥ 50%). In contrast, the rivers and associated floodplains were relatively permeable to lions (14.4%) while they represented a nearly impassable obstacle for the other species (<2%). 4. The aversion of lions to cross the fence resulted in a relatively lion-free habitat patch on one side of the fence, which might provide a potential refuge for other species. For instance, the competitively inferior wild dogs used this refuge significantly more intensively than the side of the fence with a high presence of lions. 5. We showed that the influence of a barrier on the distribution of animals could potentially result in a broad-scale modification of community structure and ecology within a guild of co-occurring species. As habitat fragmentation increases, understanding the impact of barriers on species distributions is thus essential for the implementation of landscape-scale management strategies, the development and maintenance of corridors and the enhancement of connectivity.


Subject(s)
Animal Distribution , Carnivora/physiology , Conservation of Natural Resources , Predatory Behavior , Animals , Botswana , Ecosystem , Geographic Information Systems , Spatial Analysis , Species Specificity
16.
J Chem Ecol ; 38(11): 1450-61, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23129124

ABSTRACT

Gas chromatography/mass spectrometry was used to identify 103 organic compounds from urine, feces, anal glands, and preputial glands of free-ranging African wild dogs, Lycaon pictus. Aliphatic acids were the dominant class of compound in all materials. In addition to aliphatic acids, urine contained dimethyl sulfone, 1,3-propanediol, benzoic acid, 1-methyl-2,4-imidazolidinedione, and squalene as major components: feces contained indole and cholesterol; and both contained 2-piperidone, phenol, 4-methyl phenol, benzeneacetic acid, and benzenepropanoic acid and other compounds. Anal gland secretion was particularly rich in cholesterol and fatty acids, and preputial gland secretion rich in squalene. A large majority of the identified compounds have been reported from other mammals, including species sympatric with African wild dogs. Eleven of the African wild dog components have not been reported previously from mammals and have not been found in sympatric species; one component, 1-methylimidazole-5-carboxaldehyde has not been reported previously as a natural product. In the chemical profiles of their urine, feces, and anal gland secretion African wild dogs differ markedly from other canids.


Subject(s)
Canidae/metabolism , Volatile Organic Compounds/chemistry , Africa , Animals , Animals, Wild , Feces/chemistry , Female , Gas Chromatography-Mass Spectrometry , Male , Perianal Glands/chemistry , Pheromones/chemistry , Volatile Organic Compounds/urine
17.
Mol Ecol ; 21(6): 1379-93, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22320891

ABSTRACT

Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e) < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.


Subject(s)
Animals, Wild/genetics , Canidae/genetics , Endangered Species , Genetic Variation , Africa , Animals , DNA, Mitochondrial/genetics , Gene Frequency , Genetic Drift , Genetics, Population , Histocompatibility Antigens Class II/genetics , Microsatellite Repeats , Molecular Sequence Data , Selection, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...