Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 186: 109747, 2023 09.
Article in English | MEDLINE | ID: mdl-37330053

ABSTRACT

BACKGROUND AND PURPOSE: To date, data used in the development of Deep Learning-based automatic contouring (DLC) algorithms have been largely sourced from single geographic populations. This study aimed to evaluate the risk of population-based bias by determining whether the performance of an autocontouring system is impacted by geographic population. MATERIALS AND METHODS: 80 Head Neck CT deidentified scans were collected from four clinics in Europe (n = 2) and Asia (n = 2). A single observer manually delineated 16 organs-at-risk in each. Subsequently, the data was contoured using a DLC solution, and trained using single institution (European) data. Autocontours were compared to manual delineations using quantitative measures. A Kruskal-Wallis test was used to test for any difference between populations. Clinical acceptability of automatic and manual contours to observers from each participating institution was assessed using a blinded subjective evaluation. RESULTS: Seven organs showed a significant difference in volume between groups. Four organs showed statistical differences in quantitative similarity measures. The qualitative test showed greater variation in acceptance of contouring between observers than between data from different origins, with greater acceptance by the South Korean observers. CONCLUSION: Much of the statistical difference in quantitative performance could be explained by the difference in organ volume impacting the contour similarity measures and the small sample size. However, the qualitative assessment suggests that observer perception bias has a greater impact on the apparent clinical acceptability than quantitatively observed differences. This investigation of potential geographic bias should extend to more patients, populations, and anatomical regions in the future.


Subject(s)
Deep Learning , Humans , Tomography, X-Ray Computed , Algorithms , Observer Variation , Europe , Organs at Risk , Radiotherapy Planning, Computer-Assisted
2.
J Med Internet Res ; 23(7): e26151, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34255661

ABSTRACT

BACKGROUND: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. OBJECTIVE: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. METHODS: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. RESULTS: We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. CONCLUSIONS: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Algorithms , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...