Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell ; 83(17): 3108-3122.e13, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37597513

ABSTRACT

General protein folding is mediated by chaperones that utilize ATP hydrolysis to regulate client binding and release. Zinc-finger protein 1 (Zpr1) is an essential ATP-independent chaperone dedicated to the biogenesis of eukaryotic translation elongation factor 1A (eEF1A), a highly abundant GTP-binding protein. How Zpr1-mediated folding is regulated to ensure rapid Zpr1 recycling remains an unanswered question. Here, we use yeast genetics and microscopy analysis, biochemical reconstitution, and structural modeling to reveal that folding of eEF1A by Zpr1 requires GTP hydrolysis. Furthermore, we identify the highly conserved altered inheritance of mitochondria 29 (Aim29) protein as a Zpr1 co-chaperone that recognizes eEF1A in the GTP-bound, pre-hydrolysis conformation. This interaction dampens Zpr1⋅eEF1A GTPase activity and facilitates client exit from the folding cycle. Our work reveals that a bespoke ATP-independent chaperone system has mechanistic similarity to ATPase chaperones but unexpectedly relies on client GTP hydrolysis to regulate the chaperone-client interaction.


Subject(s)
Carrier Proteins , GTP Phosphohydrolases , Molecular Chaperones , Peptide Elongation Factors , Saccharomyces cerevisiae Proteins , Humans , Adenosine Triphosphate , GTP Phosphohydrolases/genetics , Guanosine Triphosphate , Molecular Chaperones/genetics , Peptide Elongation Factors/metabolism , Saccharomyces cerevisiae , Carrier Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Folding
2.
Mol Cell ; 83(2): 252-265.e13, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36630955

ABSTRACT

The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.


Subject(s)
Carrier Proteins , Molecular Chaperones , Carrier Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Biosynthesis , Zinc/metabolism , Zinc Fingers , Peptide Elongation Factor 1/metabolism
3.
J Cell Biol ; 220(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33877288

ABSTRACT

In mammals, tail-anchored (TA) proteins that are posttranslationally captured by the chaperone SGTA are triaged by the BAG6 complex into one of two fates: handoff to an ER targeting factor for membrane insertion or polyubiquitination for destruction by the proteasome. In this issue, Culver and Mariappan (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202004086) show that a fraction of newly synthesized TA proteins is polyubiquitinated in HEK293 cells independently of the BAG6 complex yet evades proteasomal degradation by undergoing deubiquitination en route to becoming stably inserted into the ER membrane.


Subject(s)
Molecular Chaperones , Proteasome Endopeptidase Complex , Animals , Cytosol/metabolism , HEK293 Cells , Humans , Molecular Chaperones/genetics , Ubiquitination
4.
Nat Commun ; 10(1): 3262, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332180

ABSTRACT

TorsinA is an ER-resident AAA + ATPase, whose deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is an unusual AAA + ATPase that needs an external activator. Also, it likely does not thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of its still enigmatic function. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner channel of ~ 4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA + ATPases. We discuss the implications of these observations for TorsinA function.


Subject(s)
Adenosine Triphosphatases/chemistry , Models, Molecular , Molecular Chaperones/chemistry , Polymers/chemistry , Protein Conformation , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Cryoelectron Microscopy , Crystallography, X-Ray , HeLa Cells , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Polymerization , Polymers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL