Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Front Immunol ; 15: 1412513, 2024.
Article in English | MEDLINE | ID: mdl-39253084

ABSTRACT

Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αß T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αß heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.


Subject(s)
CD8 Antigens , CD8-Positive T-Lymphocytes , Immunomodulation , Humans , CD8 Antigens/metabolism , CD8 Antigens/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Signal Transduction/immunology , Structure-Activity Relationship , Immunotherapy/methods
3.
J Org Chem ; 89(17): 12748-12752, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39189383

ABSTRACT

We describe the discovery and structure of an undecapeptide natural product from a marine sponge, termed halichondamide A, that is morphed into a fused bicyclic ring topology via two disulfide bonds. Molecular dynamics simulations allow us to posit that the installation of one disulfide bond biases the intermediate peptide conformation and predisposes the formation of the second disulfide bond. The natural product was found to be mildly cytotoxic against liver and breast cancer cell lines.


Subject(s)
Molecular Dynamics Simulation , Porifera , Porifera/chemistry , Animals , Humans , Cysteine/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peptides/chemistry , Drug Screening Assays, Antitumor , Protein Folding , Biological Products/chemistry
4.
Nat Chem Biol ; 20(8): 950-959, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38907110

ABSTRACT

Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind's AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures.


Subject(s)
Models, Molecular , Protein Conformation , Proteins , Scattering, Small Angle , Proteins/chemistry , X-Ray Diffraction , Cryoelectron Microscopy , Protein Folding , Artificial Intelligence , Humans
5.
Biomacromolecules ; 25(3): 1429-1438, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38408372

ABSTRACT

We applied solid- and solution-state nuclear magnetic resonance spectroscopy to examine the structure of multidomain peptides composed of self-assembling ß-sheet domains linked to bioactive domains. Bioactive domains can be selected to stimulate specific biological responses (e.g., via receptor binding), while the ß-sheets provide the desirable nanoscale properties. Although previous work has established the efficacy of multidomain peptides, molecular-level characterization is lacking. The bioactive domains are intended to remain solvent-accessible without being incorporated into the ß-sheet structure. We tested for three possible anticipated molecular-level consequences of introducing bioactive domains to ß-sheet-forming peptides: (1) the bioactive domain has no effect on the self-assembling peptide structure; (2) the bioactive domain is incorporated into the ß-sheet nanofiber; and (3) the bioactive domain interferes with self-assembly such that nanofibers are not formed. The peptides involved in this study incorporated self-assembling domains based on the (SL)6 motif and bioactive domains including a VEGF-A mimic (QK), an IGF-mimic (IGF-1c), and a de novo SARS-CoV-2 binding peptide (SBP3). We observed all three of the anticipated outcomes from our examination of peptides, illustrating the unintended structural effects that could adversely affect the desired biofunctionality and biomaterial properties of the resulting peptide hydrogel. This work is the first attempt to evaluate the structural effects of incorporating bioactive domains into a set of peptides unified by a similar self-assembling peptide domain. These structural insights reveal unmet challenges in the design of highly tunable bioactive self-assembling peptide hydrogels.


Subject(s)
Nanofibers , Peptides , Protein Conformation, beta-Strand , Peptides/chemistry , Nanofibers/chemistry , Hydrogels/chemistry , Biocompatible Materials
7.
Nat Commun ; 15(1): 1142, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326301

ABSTRACT

The lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized ß-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions. The self-assembled fibrils maintain enhanced binding to viral protein complexes and retain high resilience to viral mutations. This method is experimentally and computationally tested using short peptides that specifically bind to Spike proteins of SARS-CoV-2. This platform is efficacious, inexpensive, and stable with excellent tolerability.


Subject(s)
COVID-19 , Humans , Peptides/chemistry , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Viral Proteins , Spike Glycoprotein, Coronavirus/metabolism
8.
Biophys J ; 123(17): 2790-2806, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38297834

ABSTRACT

De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the ß-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of ß hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial ß-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.


Subject(s)
Peptides , Peptides/chemistry , Amino Acid Sequence , Protein Structure, Secondary , Neural Networks, Computer , Hydrophobic and Hydrophilic Interactions , Models, Molecular
9.
Nat Commun ; 15(1): 1265, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341413

ABSTRACT

To biosynthesize ribosomally synthesized and post-translationally modified peptides (RiPPs), enzymes recognize and bind to the N-terminal leader region of substrate peptides which enables catalytic modification of the C-terminal core. Our current understanding of RiPP leaders is that they are short and largely unstructured. Proteusins are RiPP precursor peptides that defy this characterization as they possess unusually long leaders. Proteusin peptides have not been structurally characterized, and we possess scant understanding of how these atypical leaders engage with modifying enzymes. Here, we determine the structure of a proteusin peptide which shows that unlike other RiPP leaders, proteusin leaders are preorganized into a rigidly structured region and a smaller intrinsically disordered region. With residue level resolution gained from NMR titration experiments, the intermolecular peptide-protein interactions between proteusin leaders and a flavin-dependent brominase are mapped onto the disordered region, leaving the rigidly structured region of the proteusin leader to be functionally dispensable. Spectroscopic observations are biochemically validated to identify a binding motif in proteusin peptides that is conserved among other RiPP leaders as well. This study provides a structural characterization of the proteusin peptides and extends the paradigm of RiPP modification enzymes using not only unstructured peptides, but also structured proteins as substrates.


Subject(s)
Biological Products , Ribosomes , Ribosomes/metabolism , Peptides/chemistry , Protein Processing, Post-Translational , Catalysis , Organic Chemicals/metabolism , Biological Products/chemistry
10.
J Pept Sci ; 30(4): e3553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38031661

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys-His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein-peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 µM, respectively. A liquid chromatography-MS (LC-MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 µM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , SARS-CoV-2 , Molecular Docking Simulation , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Molecular Dynamics Simulation
11.
Nat Commun ; 14(1): 8204, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081856

ABSTRACT

The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.


Subject(s)
Antigens, Neoplasm , Neoplasms , Humans , Antigens, Neoplasm/genetics , Peptides/metabolism , Histocompatibility Antigens , HLA-A Antigens
12.
J Biomol Struct Dyn ; : 1-19, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38109194

ABSTRACT

CD1 immunoreceptors are a non-classical major histocompatibility complex (MHC) that present antigens to T cells to elucidate immune responses against disease. The antigen repertoire of CD1 has been composed primarily of lipids until recently when CD1d-restricted T cells were shown to be activated by non-lipidic small molecules, such as phenyl pentamethyl dihydrobenzofuran sulfonate (PPBF) and related benzofuran sulfonates. To date structural insights into PPBF/CD1d interactions are lacking, so it is unknown whether small molecule and lipid antigens are presented and recognized through similar mechanisms. Furthermore, it is unknown whether CD1d can bind to and present a broader range of small molecule metabolites to T cells, acting out functions analogous to the MHC class I related protein MR1. Here, we perform in silico docking and molecular dynamics simulations to structurally characterize small molecule interactions with CD1d. PPBF was supported to be presented to T cell receptors through the CD1d F' pocket. Virtual screening of CD1d against more than 17,000 small molecules with diverse geometry and chemistry identified several novel scaffolds, including phytosterols, cholesterols, triterpenes, and carbazole alkaloids, that serve as candidate CD1d antigens. Protein-ligand interaction profiling revealed conserved residues in the CD1d F' pocket that similarly anchor small molecules and lipids. Our results suggest that CD1d could have the intrinsic ability to bind and present a broad range of small molecule metabolites to T cells to carry out its function beyond lipid antigen presentation.Communicated by Ramaswamy H. Sarma.

13.
Chembiochem ; 24(12): e202300190, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37092875

ABSTRACT

Commensal bacteria associated with marine invertebrates are underappreciated sources of chemically novel natural products. Using mass spectrometry, we had previously detected the presence of peptidic natural products in obligate marine bacteria of the genus Microbulbifer cultured from marine sponges. In this report, the isolation and structural characterization of a panel of ureidohexapeptide natural products, termed the bulbiferamides, from Microbulbifer strains is reported wherein the tryptophan side chain indole participates in a macrocyclizing peptide bond formation. Genome sequencing identifies biosynthetic gene clusters encoding production of the bulbiferamides and implicates the involvement of a thioesterase in the indolic macrocycle formation. The structural diversity and widespread presence of bulbiferamides in commensal microbiomes of marine invertebrates point toward a possible ecological role for these natural products.


Subject(s)
Biological Products , Porifera , Animals , Biological Products/chemistry , Bacteria/genetics , Porifera/microbiology , Aquatic Organisms , Acylation , Indoles
14.
Nat Chem Biol ; 18(8): 859-868, 2022 08.
Article in English | MEDLINE | ID: mdl-35725941

ABSTRACT

Chaperones tapasin and transporter associated with antigen processing (TAP)-binding protein related (TAPBPR) associate with the major histocompatibility complex (MHC)-related protein 1 (MR1) to promote trafficking and cell surface expression. However, the binding mechanism and ligand dependency of MR1/chaperone interactions remain incompletely characterized. Here in vitro, biochemical and computational studies reveal that, unlike MHC-I, TAPBPR recognizes MR1 in a ligand-independent manner owing to the absence of major structural changes in the MR1 α2-1 helix between empty and ligand-loaded molecules. Structural characterization using paramagnetic nuclear magnetic resonance experiments combined with restrained molecular dynamics simulations reveals that TAPBPR engages conserved surfaces on MR1 to induce similar adaptations to those seen in MHC-I/TAPBPR co-crystal structures. Finally, nuclear magnetic resonance relaxation dispersion experiments using 19F-labeled diclofenac show that TAPBPR can affect the exchange kinetics of noncovalent metabolites with the MR1 groove, serving as a catalyst. Our results support a role of chaperones in stabilizing nascent MR1 molecules to enable loading of endogenous or exogenous cargo.


Subject(s)
Histocompatibility Antigens Class I , Immunoglobulins , Antigen Presentation , Histocompatibility Antigens Class I/chemistry , Immunoglobulins/chemistry , Ligands , Membrane Proteins/metabolism , Molecular Chaperones , Peptides/chemistry
15.
Nat Commun ; 12(1): 3174, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039964

ABSTRACT

Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Antigens/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Knockout Techniques , HEK293 Cells , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/isolation & purification , Histocompatibility Antigens Class I/ultrastructure , Humans , Immunoglobulins/genetics , Immunoglobulins/isolation & purification , Immunoglobulins/ultrastructure , Ligands , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Membrane Proteins/ultrastructure , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/ultrastructure , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Peptide Library , Protein Binding/genetics , Protein Binding/immunology , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
16.
Nat Commun ; 12(1): 691, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514730

ABSTRACT

Methyl-specific isotope labeling is a powerful tool to study the structure, dynamics and interactions of large proteins and protein complexes by solution-state NMR. However, widespread applications of this methodology have been limited by challenges in obtaining confident resonance assignments. Here, we present Methyl Assignments Using Satisfiability (MAUS), leveraging Nuclear Overhauser Effect cross-peak data, peak residue type classification and a known 3D structure or structural model to provide robust resonance assignments consistent with all the experimental inputs. Using data recorded for targets with known assignments in the 10-45 kDa size range, MAUS outperforms existing methods by up to 25,000 times in speed while maintaining 100% accuracy. We derive de novo assignments for multiple Cas9 nuclease domains, demonstrating that the methyl resonances of multi-domain proteins can be assigned accurately in a matter of days, while reducing biases introduced by manual pre-processing of the raw NOE data. MAUS is available through an online web-server.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Algorithms , CRISPR-Associated Protein 9/ultrastructure , Carbon Isotopes , Interleukin-2/chemistry , Interleukin-2/isolation & purification , Isotope Labeling/methods , Nuclear Magnetic Resonance, Biomolecular/instrumentation , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Streptococcus pyogenes/enzymology , Tritium
17.
Proc Natl Acad Sci U S A ; 117(13): 7208-7215, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32188784

ABSTRACT

The plasticity of naturally occurring protein structures, which can change shape considerably in response to changes in environmental conditions, is critical to biological function. While computational methods have been used for de novo design of proteins that fold to a single state with a deep free-energy minimum [P.-S. Huang, S. E. Boyken, D. Baker, Nature 537, 320-327 (2016)], and to reengineer natural proteins to alter their dynamics [J. A. Davey, A. M. Damry, N. K. Goto, R. A. Chica, Nat. Chem. Biol. 13, 1280-1285 (2017)] or fold [P. A. Alexander, Y. He, Y. Chen, J. Orban, P. N. Bryan, Proc. Natl. Acad. Sci. U.S.A. 106, 21149-21154 (2009)], the de novo design of closely related sequences which adopt well-defined but structurally divergent structures remains an outstanding challenge. We designed closely related sequences (over 94% identity) that can adopt two very different homotrimeric helical bundle conformations-one short (∼66 Šheight) and the other long (∼100 Šheight)-reminiscent of the conformational transition of viral fusion proteins. Crystallographic and NMR spectroscopic characterization shows that both the short- and long-state sequences fold as designed. We sought to design bistable sequences for which both states are accessible, and obtained a single designed protein sequence that populates either the short state or the long state depending on the measurement conditions. The design of sequences which are poised to adopt two very different conformations sets the stage for creating large-scale conformational switches between structurally divergent forms.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Amino Acid Sequence/genetics , Amino Acids/chemistry , Molecular Conformation , Protein Conformation , Protein Engineering/methods , Protein Folding
18.
Elife ; 82019 12 19.
Article in English | MEDLINE | ID: mdl-31854299

ABSTRACT

The computational design of a symmetric protein homo-oligomer that binds a symmetry-matched small molecule larger than a metal ion has not yet been achieved. We used de novo protein design to create a homo-trimeric protein that binds the C3 symmetric small molecule drug amantadine with each protein monomer making identical interactions with each face of the small molecule. Solution NMR data show that the protein has regular three-fold symmetry and undergoes localized structural changes upon ligand binding. A high-resolution X-ray structure reveals a close overall match to the design model with the exception of water molecules in the amantadine binding site not included in the Rosetta design calculations, and a neutron structure provides experimental validation of the computationally designed hydrogen-bond networks. Exploration of approaches to generate a small molecule inducible homo-trimerization system based on the design highlight challenges that must be overcome to computationally design such systems.


Subject(s)
Amantadine/chemistry , Protein Engineering , Proteins/chemistry , Small Molecule Libraries/chemistry , Binding Sites/drug effects , Computational Chemistry , Computer Simulation , Crystallography, X-Ray , Humans , Hydrogen Bonding/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Multimerization/drug effects , Proteins/antagonists & inhibitors
19.
Proc Natl Acad Sci U S A ; 116(51): 25602-25613, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31796585

ABSTRACT

The interplay between a highly polymorphic set of MHC-I alleles and molecular chaperones shapes the repertoire of peptide antigens displayed on the cell surface for T cell surveillance. Here, we demonstrate that the molecular chaperone TAP-binding protein related (TAPBPR) associates with a broad range of partially folded MHC-I species inside the cell. Bimolecular fluorescence complementation and deep mutational scanning reveal that TAPBPR recognition is polarized toward the α2 domain of the peptide-binding groove, and depends on the formation of a conserved MHC-I disulfide epitope in the α2 domain. Conversely, thermodynamic measurements of TAPBPR binding for a representative set of properly conformed, peptide-loaded molecules suggest a narrower MHC-I specificity range. Using solution NMR, we find that the extent of dynamics at "hotspot" surfaces confers TAPBPR recognition of a sparsely populated MHC-I state attained through a global conformational change. Consistently, restriction of MHC-I groove plasticity through the introduction of a disulfide bond between the α1/α2 helices abrogates TAPBPR binding, both in solution and on a cellular membrane, while intracellular binding is tolerant of many destabilizing MHC-I substitutions. Our data support parallel TAPBPR functions of 1) chaperoning unstable MHC-I molecules with broad allele-specificity at early stages of their folding process, and 2) editing the peptide cargo of properly conformed MHC-I molecules en route to the surface, which demonstrates a narrower specificity. Our results suggest that TAPBPR exploits localized structural adaptations, both near and distant to the peptide-binding groove, to selectively recognize discrete conformational states sampled by MHC-I alleles, toward editing the repertoire of displayed antigens.


Subject(s)
Histocompatibility Antigens Class I , Molecular Chaperones , Peptides , Disulfides/chemistry , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Protein Domains
20.
Elife ; 82019 05 28.
Article in English | MEDLINE | ID: mdl-31134895

ABSTRACT

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures.


Subject(s)
Enzyme Activation , Forkhead Box Protein M1/chemistry , Forkhead Box Protein M1/metabolism , Cell Cycle Proteins/metabolism , Peptide Fragments/metabolism , Phosphorylation , Protein Binding , Protein Conformation , Protein Domains , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Sialoglycoproteins/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL