Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Clin Exp Immunol ; 214(3): 304-313, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37860849

ABSTRACT

Cladribine tablets are a treatment for multiple sclerosis with effects on lymphocytes, yet its mode of action has not been fully established. Here, we analyzed the effects of cladribine on mitochondrial DNA integrity in lymphocytes. We treated cultured human T-cell lines (CCRF-CEM and Jurkat) with varying concentrations of cladribine to mimic the slow cell depletion observed in treated patients. The CCRF-CEM was more susceptible to cladribine than Jurkat cells. In both cells, mitochondrial protein synthesis, mitochondrial DNA copy number, and mitochondrial cytochrome-c oxidase-I mRNA mutagenesis was not affected by cladribine, while caspase-3 cleavage was detected in Jurkat cells at 100 nM concentration. Cladribine treatment at concentrations up to 10 nM in CCRF-CEM and 100 nM in Jurkat cells did not induce significant increase in mitochondrial DNA mutations. Peripheral blood mononuclear cells from eight multiple sclerosis patients and four controls were cultured with or without an effective dose of cladribine (5 nM). However, we did not find any differences in mitochondrial DNA somatic mutations in lymphocyte subpopulations (CD4+, CD8+, and CD19+) between treated versus nontreated cells. The overall mutation rate was similar in patients and controls. When different lymphocyte subpopulations were compared, greater mitochondrial DNA mutation levels were detected in CD8+ (P = 0.014) and CD4+ (P = 0.038) as compared to CD19+ cells, these differences were independent of cladribine treatment. We conclude that T cells have more detectable mitochondrial DNA mutations than B cells, and cladribine has no detectable mutagenic effect on lymphocyte mitochondrial genome nor does it impair mitochondrial function in human T-cell lines.


Subject(s)
Genome, Mitochondrial , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Cladribine/pharmacology , Cladribine/therapeutic use , Leukocytes, Mononuclear , Lymphocytes , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/therapeutic use , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use
2.
Cell Metab ; 35(4): 553-554, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37019079

ABSTRACT

The human nervous system matures over a protracted developmental time frame relative to other species. What sets the pace of maturation has remained a mystery. In a recent publication in Science, Iwata et al. unearth critical contributions of mitochondrial metabolism in setting the pace of species-specific corticogenesis.


Subject(s)
Mitochondria , Nervous System , Animals , Humans , Mammals , Mitochondria/metabolism , Nervous System/growth & development
3.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36930241

ABSTRACT

When mitochondrial damage threatens to disrupt cell and tissue homeostasis, selective autophagy (mitophagy) provides an important route to neutralize dysfunctional organelles. Whilst we understand much about stress-induced mitophagy, steady-state and spatial mechanisms remain elusive. In this issue, Gok et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202204021) reveal an unexpected role for TMEM11 in mitophagy regulation.


Subject(s)
Membrane Proteins , Mitophagy , Organelles , Autophagy/genetics , Homeostasis , Macroautophagy
4.
Trends Neurosci ; 46(2): 137-152, 2023 02.
Article in English | MEDLINE | ID: mdl-36635110

ABSTRACT

Efforts to understand how mitochondrial dysfunction contributes to neurodegeneration have primarily focussed on the role of mitochondria in neuronal energy metabolism. However, progress in understanding the etiological nature of emerging mitochondrial functions has yielded new ideas about the mitochondrial basis of neurological disease. Studies aimed at deciphering how mitochondria signal through interorganellar contacts, vesicular trafficking, and metabolic transmission have revealed that mitochondrial regulation of immunometabolism, cell death, organelle dynamics, and neuroimmune interplay are critical determinants of neural health. Moreover, the homeostatic mechanisms that exist to protect mitochondrial health through turnover via nanoscale proteostasis and lysosomal degradation have become integrated within mitochondrial signalling pathways to support metabolic plasticity and stress responses in the nervous system. This review highlights how these distinct mitochondrial pathways converge to influence neurological health and contribute to disease pathology.


Subject(s)
Mitochondria , Nervous System Diseases , Humans , Mitochondria/metabolism , Organelles/metabolism , Homeostasis , Signal Transduction , Nervous System Diseases/metabolism
5.
Autophagy ; 19(2): 724-725, 2023 02.
Article in English | MEDLINE | ID: mdl-35939345

ABSTRACT

Mitophagy neutralizes defective mitochondria via lysosomal elimination. Increased levels of mitophagy hallmark metabolic transitions and are induced by iron depletion, yet its metabolic basis has not been studied in-depth. How mitophagy integrates with different homeostatic mechanisms to support metabolic integrity is incompletely understood. We examined metabolic adaptations in cells treated with deferiprone (DFP), a therapeutic iron chelator known to induce PINK1-PRKN-independent mitophagy. We found that iron depletion profoundly rewired the cellular metabolome, remodeling lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurs upstream of mitochondrial turnover, with many LDs bordering mitochondria upon iron chelation. Surprisingly, DGAT1 inhibition restricts mitophagy in vitro by lysosomal dysfunction. Genetic depletion of mdy/DGAT1 in vivo impairs neuronal mitophagy and locomotor function in Drosophila, demonstrating the physiological relevance of our findings.


Subject(s)
Drosophila Proteins , Mitophagy , Animals , Mitophagy/genetics , Protein Kinases/metabolism , Lipid Droplets/metabolism , Autophagy , Ubiquitin-Protein Ligases/metabolism , Drosophila/metabolism , Iron , Protein Serine-Threonine Kinases , Drosophila Proteins/metabolism
6.
Front Cell Dev Biol ; 10: 978142, 2022.
Article in English | MEDLINE | ID: mdl-36303604

ABSTRACT

Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.

7.
EMBO J ; 41(10): e109390, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35411952

ABSTRACT

Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.


Subject(s)
Iron , Mitophagy , Animals , Iron/metabolism , Lysosomes/metabolism , Mammals , Mitochondria/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
8.
Cell Metab ; 34(2): 197-208.e5, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35030325

ABSTRACT

Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.


Subject(s)
Mitochondrial Diseases , Mitophagy , Animals , Humans , Mammals , Mice , Mitochondria , Mitochondrial Diseases/metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism
9.
EMBO Mol Med ; 13(12): e14824, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34725936

ABSTRACT

The cardinal stages of macroautophagy are driven by core autophagy-related (ATG) proteins, whose ablation largely abolishes intracellular turnover. Disrupting ATG genes is paradigmatic of studying autophagy deficiency, yet emerging data suggest that ATG proteins have extensive biological importance beyond autophagic elimination. An important example is ATG7, an essential autophagy effector enzyme that in concert with other ATG proteins, also regulates immunity, cell death and protein secretion, and independently regulates the cell cycle and apoptosis. Recently, a direct association between ATG7 dysfunction and disease was established in patients with biallelic ATG7 variants and childhood-onset neuropathology. Moreover, a prodigious body of evidence supports a role for ATG7 in protecting against complex disease states in model organisms, although how dysfunctional ATG7 contributes to manifestation of these diseases, including cancer, neurodegeneration and infection, in humans remains unclear. Here, we systematically review the biological functions of ATG7, discussing the impact of its impairment on signalling pathways and human pathology. Future studies illuminating the molecular relationship between ATG7 dysfunction and disease will expedite therapies for disorders involving ATG7 deficiency and/or impaired autophagy.


Subject(s)
Apoptosis , Autophagy , Autophagy/genetics , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Child , Humans , Signal Transduction
10.
J Immunother Cancer ; 9(8)2021 08.
Article in English | MEDLINE | ID: mdl-34362830

ABSTRACT

BACKGROUND: Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells. To increase efficacy while minimizing toxicity, we designed an oncolytic adenovirus that secretes a cross-hybrid Fc-fusion peptide against PD-L1 able to elicit effector mechanisms of an IgG1 and also IgA1 consequently activating neutrophils, a population neglected by IgG1, in order to combine multiple effector mechanisms. METHODS: The cross-hybrid Fc-fusion peptide comprises of an Fc with the constant domains of an IgA1 and IgG1 which is connected to a PD-1 ectodomain via a GGGS linker and was cloned into an oncolytic adenovirus. We demonstrated that the oncolytic adenovirus was able to secrete the cross-hybrid Fc-fusion peptide able to bind to PD-L1 and activate multiple immune components enhancing tumor cytotoxicity in various cancer cell lines, in vivo and ex vivo renal-cell carcinoma patient-derived organoids. RESULTS: Using various techniques to measure cytotoxicity, the cross-hybrid Fc-fusion peptide expressed by the oncolytic adenovirus was shown to activate Fc-effector mechanisms of an IgA1 (neutrophil activation) as well as of an IgG1 (natural killer and complement activation). The activation of multiple effector mechanism simultaneously led to significantly increased tumor killing compared with FDA-approved PD-L1 checkpoint inhibitor (Atezolizumab), IgG1-PDL1 and IgA-PDL1 in various in vitro cell lines, in vivo models and ex vivo renal cell carcinoma organoids. Moreover, in vivo data demonstrated that Ad-Cab did not require CD8+ T cells, unlike conventional checkpoint inhibitors, since it was able to activate other effector populations. CONCLUSION: Arming PD-L1 checkpoint inhibitors with Fc-effector mechanisms of both an IgA1 and an IgG1 can increase efficacy while maintaining safety by limiting expression to the tumor using oncolytic adenovirus. The increase in tumor killing is mostly attributed to the activation of multiple effector populations rather than activating a single effector population leading to significantly higher tumor killing.


Subject(s)
Immune Checkpoint Inhibitors/administration & dosage , Immunotherapy/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Cell Line, Tumor , Female , Humans , Immune Checkpoint Inhibitors/immunology , Immunoglobulin A/administration & dosage , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/immunology , Neoplasms/virology , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Organoids , Receptors, Fc/administration & dosage , Receptors, Fc/genetics , Receptors, Fc/immunology
11.
Autophagy ; 17(9): 2651-2653, 2021 09.
Article in English | MEDLINE | ID: mdl-34313536

ABSTRACT

ATG7 drives macroautophagy, hereafter "autophagy", by generating ATG12-ATG5 conjugates and lipidating Atg8 homologs including LC3. A pioneering body of work has defined the requirement of ATG7 for survival in mice and shown that neural-specific atg7 deletion causes neurodegeneration, but it has not been ascertained whether human life is compatible with ATG7 dysfunction. Recently, we defined the importance of ATG7 in human physiology by identifying twelve patients from five families harboring pathogenic, biallelic ATG7 variants causing a neurodevelopmental disorder. Patient fibroblasts show undetectable or severely diminished ATG7 protein levels, and biochemical assessment via autophagic flux and long-lived protein degradation assays demonstrated that attenuated autophagy underpins the pathology. Confirming the pathogenicity of patient variants, mouse cells expressing mutated ATG7 are unable to rescue LC3/Atg8 lipidation to wild-type levels. Our work defines mutated ATG7 as an important cause of human neurological disease and expands our understanding of autophagy in longevity and human health. We demonstrated that in certain circumstances, human survival with relatively mild phenotypes is possible even with undetectable levels of a nonredundant core autophagy protein.


Subject(s)
Autophagy , Nervous System , Proteins , Animals , Autophagy/physiology , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Fibroblasts/metabolism , Humans , Mice , Nervous System/pathology , Proteins/metabolism
12.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34161705

ABSTRACT

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Subject(s)
Abnormalities, Multiple/genetics , Ataxia/genetics , Autophagy-Related Protein 7/genetics , Autophagy/genetics , Developmental Disabilities/genetics , Mutation, Missense , Adolescent , Adult , Autophagy/physiology , Autophagy-Related Protein 7/physiology , Cells, Cultured , Cerebellum/abnormalities , Computer Simulation , Face/abnormalities , Female , Fibroblasts , Genes, Recessive , Humans , Infant , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nervous System Malformations/genetics , Pedigree , Phenotype
14.
Semin Cancer Biol ; 66: 12-21, 2020 11.
Article in English | MEDLINE | ID: mdl-31319163

ABSTRACT

Autophagy refers to an essential mechanism that evolved to sustain eukaryotic homeostasis and metabolism during instances of nutrient deprivation. During autophagy, intracellular cargo is encapsulated and delivered to the lysosome for elimination. Loss of basal autophagy in vivo negatively impacts cellular proteostasis, metabolism and tissue integrity. Accordingly, many drug development strategies are focused on modulating autophagic capacity in various pathophysiological states, from cancer to neurodegenerative disease. The role of autophagy in cancer is particularly complicated, as either augmenting or attenuating this process can have variable outcomes on cellular survival, proliferation and transformation. This complexity is compounded by the emergence of several selective autophagy pathways, which act to eliminate damaged or superfluous cellular components in a targeted fashion. The advent of sensitive tools to monitor autophagy pathways in vivo holds promise to clarify their importance in cancer pathophysiology. In this review, we provide an overview of autophagy in cancer biology and outline how the development of tools to study autophagy in vivo could enhance our understanding of its function for translational benefit.


Subject(s)
Autophagy/physiology , Neoplasms/pathology , Animals , Homeostasis/physiology , Humans , Neurodegenerative Diseases/pathology , Proteostasis/physiology
15.
Open Biol ; 9(11): 190192, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31771416

ABSTRACT

O-GlcNAcylation is an abundant post-translational modification in the nervous system, linked to both neurodevelopmental and neurodegenerative disease. However, the mechanistic links between these phenotypes and site-specific O-GlcNAcylation remain largely unexplored. Here, we show that Ser517 O-GlcNAcylation of the microtubule-binding protein Collapsin Response Mediator Protein-2 (CRMP2) increases with age. By generating and characterizing a Crmp2S517A knock-in mouse model, we demonstrate that loss of O-GlcNAcylation leads to a small decrease in body weight and mild memory impairment, suggesting that Ser517 O-GlcNAcylation has a small but detectable impact on mouse physiology and cognitive function.


Subject(s)
Acetylglucosamine/metabolism , Cognition , Intercellular Signaling Peptides and Proteins/metabolism , Memory, Short-Term , Nerve Tissue Proteins/metabolism , Acetylglucosamine/analysis , Aging , Amino Acid Sequence , Animals , Cell Line , Exploratory Behavior , Female , Gene Knock-In Techniques , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Male , Memory Disorders/genetics , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Point Mutation , Protein Processing, Post-Translational
16.
Development ; 146(18)2019 09 16.
Article in English | MEDLINE | ID: mdl-31488565

ABSTRACT

Multiple members of the tumour necrosis factor superfamily (TNFSF) regulate the growth and branching of neural processes late in development, when neurons are establishing and refining connections. Here, we present the first evidence that a TNFSF member acts much earlier in development, when axons are growing to their targets. CD40L transiently enhanced axon growth from embryonic mouse DRG neurons cultured at this early stage. Early spinal nerves of embryos lacking the CD40L receptor (Cd40-/- mice) were significantly shorter in vivo than those of Cd40+/+ littermates. CD40L was synthesized in early DRG targets and was co-expressed with CD40 in early DRG neurons. Whereas CD40L enhanced early axon growth independently of neurotrophins, disruption of a CD40L/CD40 autocrine loop impaired early neurotrophin-promoted axon growth. In marked contrast to the widespread regulation of axon and dendrite growth by CD40L reverse signalling later in development, CD40-Fc, which activates reverse signalling, had no effect on early sensory axon growth. These results suggest that CD40 forward signalling is a novel physiological regulator of early axon growth that acts by target-derived and autocrine mechanisms.


Subject(s)
Axons/metabolism , CD40 Antigens/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction , Animals , Autocrine Communication , CD40 Ligand/genetics , CD40 Ligand/metabolism , Cell Survival , Embryo, Mammalian/metabolism , Ganglia, Spinal/metabolism , Gene Deletion , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sensory Receptor Cells/cytology , Spinal Nerves/metabolism
17.
Autophagy ; 15(7): 1296-1308, 2019 07.
Article in English | MEDLINE | ID: mdl-30786807

ABSTRACT

Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used. Abbreviations: ATG: autophagy related; GFP: green fluorescent protein; LC3: microtubule associated protein 1 light chain 3; ONH: optic nerve head; ONL: outer nuclear layer; RPE: retinal pigment epithelium.


Subject(s)
Eye/metabolism , Macroautophagy/physiology , Mitophagy/physiology , Animals , Autophagosomes/metabolism , Cell Differentiation/physiology , Ciliary Body/cytology , Ciliary Body/metabolism , Cornea/cytology , Cornea/metabolism , Eye/cytology , Eye/growth & development , Homeostasis/physiology , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Optic Nerve/cytology , Optic Nerve/metabolism , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Retina/cytology , Retina/metabolism
19.
Methods Mol Biol ; 1880: 621-642, 2019.
Article in English | MEDLINE | ID: mdl-30610727

ABSTRACT

Autophagy evolved as a mechanism to sustain cellular homeostasis during instances of nutrient deprivation. Mounting evidence has also clarified that under basal and stress conditions, selective autophagy pathways can target the destruction of specific organelles. Mitochondrial autophagy, or mitophagy, has emerged as a key quality control (QC) mechanism to sustain the integrity of eukaryotic mitochondrial networks. We recently reported the development of mito-QC, a novel reporter mouse model that enables the high-resolution study of mammalian mitophagy with precision, in fixed and live preparations. This model holds significant potential to transform our understanding of mammalian mitophagy pathways in vivo, in a variety of physiological contexts. We outline a detailed protocol for use of our recently described mito-QC mouse model, including tips and troubleshooting advice for those interested in monitoring mitophagy in vitro and in vivo.


Subject(s)
Luminescent Proteins/genetics , Mitochondria/metabolism , Mitophagy/physiology , Models, Animal , Animals , Cells, Cultured , Embryo, Mammalian , Genes, Reporter/genetics , Luminescent Proteins/chemistry , Mice , Mice, Transgenic , Microdissection/instrumentation , Microdissection/methods , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Primary Cell Culture/instrumentation , Primary Cell Culture/methods
20.
Neuronal Signal ; 3(3): NS20180134, 2019 09.
Article in English | MEDLINE | ID: mdl-32269837

ABSTRACT

Autophagy refers to the lysosomal degradation of damaged or superfluous components and is essential for metabolic plasticity and tissue integrity. This evolutionarily conserved process is particularly vital to mammalian post-mitotic cells such as neurons, which face unique logistical challenges and must sustain homoeostasis over decades. Defective autophagy has pathophysiological importance, especially for human neurodegeneration. The present-day definition of autophagy broadly encompasses two distinct yet related phenomena: non-selective and selective autophagy. In this minireview, we focus on established and emerging concepts in the field, paying particular attention to the physiological significance of macroautophagy and the burgeoning world of selective autophagy pathways in the context of the vertebrate nervous system. By highlighting established basics and recent breakthroughs, we aim to provide a useful conceptual framework for neuroscientists interested in autophagy, in addition to autophagy enthusiasts with an eye on the nervous system.

SELECTION OF CITATIONS
SEARCH DETAIL
...