Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1492, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932080

ABSTRACT

Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.


Subject(s)
Retina , Supraoptic Nucleus , Female , Mice , Animals , Supraoptic Nucleus/metabolism , Retina/metabolism , Retinal Ganglion Cells/physiology , Rod Opsins/genetics
2.
J Neurosci ; 41(46): 9503-9520, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34620721

ABSTRACT

Neuromodulation via the intracellular second messenger cAMP is ubiquitous at presynaptic nerve terminals. This modulation of synaptic transmission allows exocytosis to adapt to stimulus levels and reliably encode information. The AII amacrine cell (AII-AC) is a central hub for signal processing in the mammalian retina. The main apical dendrite of the AII-AC is connected to several lobular appendages that release glycine onto OFF cone bipolar cells and ganglion cells. However, the influence of cAMP on glycine release is not well understood. Using membrane capacitance measurements from mouse AII-ACs to directly measure exocytosis, we observe that intracellular dialysis of 1 mm cAMP enhances exocytosis without affecting the L-type Ca2+ current. Responses to depolarizing pulses of various durations show that the size of the readily releasable pool of vesicles nearly doubles with cAMP, while paired-pulse depression experiments suggest that release probability does not change. Specific agonists and antagonists for exchange protein activated by cAMP 2 (EPAC2) revealed that the cAMP-induced enhancement of exocytosis requires EPAC2 activation. Furthermore, intact Ca2+ stores were also necessary for the cAMP potentiation of exocytosis. Postsynaptic recordings from OFF cone bipolar cells showed that increasing cAMP with forskolin potentiated the frequency of glycinergic spontaneous IPSCs. We propose that cAMP elevations in the AII-AC lead to a robust enhancement of glycine release through an EPAC2 and Ca2+ store signaling pathway. Our results thus contribute to a better understanding of how AII-AC crossover inhibitory circuits adapt to changes in ambient luminance.SIGNIFICANCE STATEMENT The mammalian retina operates over a wide dynamic range of light intensities and contrast levels. To optimize the signal-to-noise ratio of processed visual information, both excitatory and inhibitory synapses within the retina must modulate their gain in synaptic transmission to adapt to different levels of ambient light. Here we show that increases of cAMP concentration within AII amacrine cells produce enhanced exocytosis from these glycinergic interneurons. Therefore, we propose that light-sensitive neuromodulators may change the output of glycine release from AII amacrine cells. This novel mechanism may fine-tune the amount of tonic and phasic synaptic inhibition received by bipolar cell terminals and, consequently, the spiking patterns that ganglion cells send to the upstream visual areas of the brain.


Subject(s)
Amacrine Cells/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , Glycine/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Animals , Exocytosis/physiology , Female , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
3.
Cell ; 184(18): 4669-4679.e13, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34390643

ABSTRACT

Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.


Subject(s)
Electrophysiological Phenomena , Sulfate Transporters/metabolism , Anions , Binding Sites , Chlorides/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Lipid Bilayers/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Protein Multimerization , Protein Stability , Salicylic Acid/metabolism , Structural Homology, Protein , Sulfate Transporters/chemistry , Sulfate Transporters/ultrastructure
4.
Eur J Neurosci ; 50(1): 1741-1758, 2019 07.
Article in English | MEDLINE | ID: mdl-30706560

ABSTRACT

The development and survival of spiral ganglion neurons (SGNs) are dependent on multiple trophic factors as well as membrane electrical activity. Semaphorins (Sema) constitute a family of membrane-associated and secreted proteins that have garnered significant attention as a potential SGN "navigator" during cochlea development. Previous studies using mutant mice demonstrated that Sema3A plays a role in the SGN pathfinding. The mechanisms, however, by which Sema3A shapes SGNs firing behavior are not known. In these studies, we found that Sema3A plays a novel role in regulating SGN resting membrane potential and excitability. Using dissociated SGN from pre-hearing (P3-P5) and post-hearing mice (P12-P15), we recorded membrane potentials using whole-cell patch clamp recording techniques in apical and basal SGN populations. Recombinant Sema3A was applied to examine the effects on intrinsic membrane properties and action potentials evoked by current injections. Apical and basal SGNs from newborn mice treated with recombinant Sema3A (100 ng/ml) displayed a higher resting membrane potential, higher threshold, decreased amplitude, and prolonged latency and duration of spikes. Although a similar phenomenon was observed in SGNs from post-hearing mice, the resting membrane potential was essentially indistinguishable before and after Sema3A exposure. Sema3A-mediated changes in membrane excitability were associated with a significant decrease in K+ and Ca2+ currents. Sema3A acts through linopirdine-sensitive K+ channels in apical, but not in the basal SGNs. Therefore, Sema3A induces differential effects in SGN membrane excitability that are dependent on age and location, and constitutes an additional early and novel effect of Sema3A SGNs in vitro.


Subject(s)
Cochlea/physiology , Membrane Potentials/physiology , Neurons/physiology , Semaphorin-3A/physiology , Spiral Ganglion/physiology , Animals , Animals, Newborn , Cochlea/growth & development , Female , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...