Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nutrients ; 9(7)2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28753942

ABSTRACT

Quercetin (Q) and green tea extract (E) are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ) could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD) fed to mice. Male C57BL/6 mice (n = 40) were put on HFD (fat = 60%kcal) for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW)/day), E (3 mg of epigallocatechin gallate/kg BW/day), EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT), followed by area-under-the-curve (AUC) estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR) on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA), and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05). Plasma cytokines were similar among groups (p > 0.05). AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311), but non-significant from control (p = 0.0809). Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.


Subject(s)
Diet, High-Fat/adverse effects , Inflammation/drug therapy , Plant Extracts/pharmacology , Quercetin/pharmacology , Tea/chemistry , Adiposity , Animals , Body Mass Index , Body Weight , Catechin/analogs & derivatives , Catechin/pharmacology , Cytokines/blood , Dietary Supplements , Endpoint Determination , Gene Expression Regulation , Glucose Tolerance Test , Inflammation/genetics , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism
2.
J Vis Exp ; (115)2016 09 12.
Article in English | MEDLINE | ID: mdl-27684595

ABSTRACT

The granulocyte and monocyte phagocytosis and oxidative burst (OB) activity assay can be used to study the innate immune system. This manuscript provides the necessary methodology to add this assay to an exercise immunology arsenal. The first step in this assay is to prepare two aliquots ("H" and "F") of whole blood (heparin). Then, dihydroethidium is added to the H aliquot, and both aliquots are incubated in a warm water bath followed by a cold water bath. Next, Staphylococcus aureus (S. aureus) is added to the H aliquot and fluorescein isothiocyanate-labeled S. aureus is added to the F aliquot (bacteria:phagocyte = 8:1), and both aliquots are incubated in a warm water bath followed by a cold water bath. Then, trypan blue is added to each aliquot to quench extracellular fluorescence, and the cells are washed with phosphate-buffered saline. Next, the red blood cells are lysed, and the white blood cells are fixed. Finally, a flow cytometer and appropriate analysis software are used to measure granulocyte and monocyte phagocytosis and OB activity. This assay has been used for over 20 years. After heavy and prolonged exertion, athletes experience a significant but transient increase in phagocytosis and an extended decrease in OB activity. The post-exercise increase in phagocytosis is correlated with inflammation. In contrast to normal weight individuals, granulocyte and monocyte phagocytosis is chronically elevated in overweight and obese participants, and is modestly correlated with C-reactive protein. In summary, this flow cytometry-based assay measures the phagocytosis and OB activity of phagocytes and can be used as an additional measure of exercise- and obesity-induced inflammation.


Subject(s)
Granulocytes/immunology , Monocytes/immunology , Phagocytosis/immunology , Respiratory Burst/immunology , Flow Cytometry/methods , Humans , Staphylococcal Infections/blood , Staphylococcal Infections/immunology , Staphylococcus aureus/metabolism
3.
Nutrients ; 8(5)2016 May 11.
Article in English | MEDLINE | ID: mdl-27187447

ABSTRACT

Flavonoids and fish oils have anti-inflammatory and immune-modulating influences. The purpose of this study was to determine if a mixed flavonoid-fish oil supplement (Q-Mix; 1000 mg quercetin, 400 mg isoquercetin, 120 mg epigallocatechin (EGCG) from green tea extract, 400 mg n3-PUFAs (omega-3 polyunsaturated fatty acid) (220 mg eicosapentaenoic acid (EPA) and 180 mg docosahexaenoic acid (DHA)) from fish oil, 1000 mg vitamin C, 40 mg niacinamide, and 800 µg folic acid) would reduce complications associated with obesity; that is, reduce inflammatory and oxidative stress markers and alter genomic profiles in overweight women. Overweight and obese women (n = 48; age = 40-70 years) were assigned to Q-Mix or placebo groups using randomized double-blinded placebo-controlled procedures. Overnight fasted blood samples were collected at 0 and 10 weeks and analyzed for cytokines, C-reactive protein (CRP), F2-isoprostanes, and whole-blood-derived mRNA, which was assessed using Affymetrix HuGene-1_1 ST arrays. Statistical analysis included two-way ANOVA models for blood analytes and gene expression and pathway and network enrichment methods for gene expression. Plasma levels increased with Q-Mix supplementation by 388% for quercetin, 95% for EPA, 18% for DHA, and 20% for docosapentaenoic acid (DPA). Q-Mix did not alter plasma levels for CRP (p = 0.268), F2-isoprostanes (p = 0.273), and cytokines (p > 0.05). Gene set enrichment analysis revealed upregulation of pathways in Q-Mix vs. placebo related to interferon-induced antiviral mechanism (false discovery rate, FDR < 0.001). Overrepresentation analysis further disclosed an inhibition of phagocytosis-related inflammatory pathways in Q-Mix vs. placebo. Thus, a 10-week Q-Mix supplementation elicited a significant rise in plasma quercetin, EPA, DHA, and DPA, as well as stimulated an antiviral and inflammation whole-blood transcriptomic response in overweight women.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fish Oils/pharmacology , Flavonoids/pharmacology , Overweight/metabolism , Transcriptome/drug effects , Biomarkers , Dietary Supplements , Female , Fish Oils/administration & dosage , Flavonoids/administration & dosage , Gene Expression Regulation/drug effects , Humans , Inflammation/drug therapy , Inflammation/metabolism , Middle Aged , Overweight/blood
4.
Brain Behav Immun ; 56: 246-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27018002

ABSTRACT

This study utilized a pro-inflammatory exercise mode to explore potential linkages between increases in 9- and 13-hydroxy-octadecadienoic acid (9+13 HODE) and biomarkers for inflammation, oxidative stress, and muscle damage. Male (N=10) and female (N=10) runners ran at ∼70% VO2max for 1.5h followed by 30min of downhill running (-10%). Blood samples were taken pre-run and immediately-, 1-h-, and 24-h post-run, and analyzed for 9+13 HODE, F2-isoprostanes, six cytokines, C-reactive protein (CRP), creatine kinase (CK), and myoglobin (MYO). Gender groups performed at comparable relative heart rate and oxygen consumption levels during the 2-h run. All outcome measures increased post-run (time effects, P⩽0.001), with levels near pre-run levels by 24h except for CRP, CK, MYO, and delayed onset of muscle soreness (DOMS). Plasma 9+13 HODE increased 314±38.4% post-run (P<0.001), 77.3±15.8% 1-h post-run (P<0.001), and 40.6±16.4% 24-h post-exercise (P=0.024), and F2-isoprostanes increased 50.8±8.9% post-run (P<0.001) and 19.0±5.3% 1-h post-run (P=0.006). Post-run increases were comparable between genders for all outcomes except for 9+13 HODE (interaction effect, P=0.024, post-run tending higher in females), IL-10 (P=0.006, females lower), and DOMS (P=0.029, females lower). The pre-to-post-run increase in 9+13 HODEs was not related to other outcomes except for plasma granulocyte colony stimulating factor (GCSF) (r=-0.710, P<0.001) and IL-6 (r=-0.457, P=0.043). Within the context of this study, exercise-induced increases in 9+13 HODEs tended higher in females, and were not related to increases in F2-isoprostanes, muscle damage, or soreness. The negative relationships to GCSF and IL-6 suggest a linkage between 9+13 HODES and exercise-induced neutrophil chemotaxis, degranulation, and inflammation.


Subject(s)
C-Reactive Protein/metabolism , Creatine Kinase/blood , Cytokines/blood , Granulocyte Colony-Stimulating Factor/blood , Inflammation/blood , Interleukin-6/blood , Linoleic Acids, Conjugated/blood , Linoleic Acids/blood , Myalgia/blood , Myoglobin/blood , Oxidative Stress/physiology , Running/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
5.
J Proteome Res ; 14(12): 5367-77, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26561314

ABSTRACT

Bananas and pears vary in sugar and phenolic profiles, and metabolomics was utilized to measure their influence on exercise performance and recovery. Male athletes (N = 20) cycled for 75 km while consuming water (WATER), bananas (BAN), or pears (PEAR) (0.6 g carbohydrate/kg each hour) in randomized order. UPLC-MS/MS and the library of purified standards maintained by Metabolon (Durham, NC) were used to analyze metabolite shifts in pre- and postexercise (0-h, 1.5-h, 21-h) blood samples. Performance times were 5.0% and 3.3% faster during BAN and PEAR versus WATER (P = 0.018 and P = 0.091, respectively), with reductions in cortisol, IL-10, and total leukocytes, and increases in blood glucose, insulin, and FRAP. Partial Least Square Discriminant Analysis (PLS-DA) showed a distinct separation between trials immediately (R(2)Y = 0.877, Q(2)Y = 0.457) and 1.5-h postexercise (R(2)Y = 0.773, Q(2)Y = 0.441). A total of 107 metabolites (primarily lipid-related) increased more than 2-fold during WATER, with a 48% and 52% reduction in magnitude during BAN and PEAR recovery (P < 0.001). Increases in metabolites unique to BAN and PEAR included fructose and fruit constituents, and sulfated phenolics that were related to elevated FRAP. These data indicate that BAN and PEAR ingestion improves 75-km cycling performance, attenuates fatty acid utilization and oxidation, and contributes unique phenolics that augment antioxidant capacity.


Subject(s)
Diet , Exercise/physiology , Musa , Pyrus , Adult , Antioxidants/metabolism , Blood Cell Count , Blood Glucose/metabolism , Cytokines/blood , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/analysis , Exercise Test , Humans , Hydrocortisone/blood , Insulin/blood , Lactic Acid/blood , Male , Metabolome , Metabolomics , Middle Aged , Musa/chemistry , Phenols/administration & dosage , Phenols/analysis , Pyrus/chemistry
6.
Front Nutr ; 2: 27, 2015.
Article in English | MEDLINE | ID: mdl-26442273

ABSTRACT

OBJECTIVES: The purpose of this study was to correlate post-exercise muscle glycogen levels with changes in plasma cytokine, and muscle mRNA cytokine expression and protein content. METHODS: Twenty-four male runners (age 36.5 ± 1.8 years, VO2max 60.0 ± 1.5 mL⋅kg(-1) ⋅ min(-1)) ran twice (separated by 4 weeks) on treadmills to exhaustion at 70% VO2max (average time and distance of 2.24 ± 0.09 h and 24.9 ± 1.1 km). Muscle biopsies from the vastus lateralis and blood samples were collected before and after each run, with IL-6, IL-8, and MCP-1 measured in muscle (mRNA and protein) and plasma. Data from the two runs were averaged. RESULTS: Participants experienced a 35.3 ± 4.2% decrease (P < 0.001) in skeletal muscle glycogen content (67.5 ± 2.8 to 44.3 ± 3.7 mmol⋅kg(-1) wet weight). Muscle mRNA expression for IL-6, IL-8, and MCP-1 increased 7.34 ± 0.90-, 13.9 ± 2.3-, and 4.10 ± 0.60-fold, respectively (all, P < 0.001). Skeletal muscle IL-6, IL-8, and MCP-1 protein content increased 35.8 ± 10.6, 80.6 ± 12.1, and 105 ± 17.9%, respectively (all, P ≤ 0.005). Plasma IL-6, IL-8, and MCP-1 increased 47.1 ± 10.0-, 2.6 ± 0.3-, and 1.6 ± 0.1-fold, respectively (all, P < 0.001). Post-exercise muscle glycogen concentrations were negatively correlated with run time to exhaustion (r = -0.70, P < 0.001), and changes in muscle IL-6 protein content (r = -0.44, P = 0.049), plasma IL-6 (r = -0.72, P < 0.001), IL-8 (r = -0.60, P = 0.002), and MCP-1 (r = -0.589, P = 0.002), but not with changes in muscle IL-8 and MCP-1 protein content, or muscle mRNA expression for IL-6, IL-8, and MCP-1. CONCLUSION: Prolonged and intensive running increased muscle mRNA expression, muscle protein content, and plasma levels for IL-6, IL-8, and MCP-1, and post-run muscle glycogen levels were most strongly related to plasma cytokine levels.

7.
Nutrients ; 7(5): 3666-76, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25988762

ABSTRACT

Runners (n = 24) reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg-1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max). Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA) during the chia seed oil (337%) versus water trial (35%) (70.8 ± 8.6, 20.3 ± 1.8 µg mL(-1), respectively, p < 0.001), run time to exhaustion did not differ between trials (1.86 ± 0.10, 1.91 ± 0.13 h, p = 0.577, respectively). No trial differences were found for respiratory exchange ratio (RER) (0.92 ± 0.01), oxygen consumption, ventilation, ratings of perceived exertion (RPE), and plasma glucose and blood lactate. Significant post-run increases were measured for total leukocyte counts, plasma cortisol, and plasma cytokines (Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), and Tumor necrosis factors-α (TNF-α)), with no trial differences. Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures.


Subject(s)
Athletic Performance/physiology , Physical Endurance/drug effects , Plant Oils/pharmacology , Running/physiology , Salvia/chemistry , Seeds/chemistry , alpha-Linolenic Acid/pharmacology , Adult , Cytokines/blood , Dietary Supplements , Eating , Fasting , Female , Humans , Hydrocortisone/blood , Male , Middle Aged , Oxygen Consumption , Plant Oils/chemistry , Young Adult , alpha-Linolenic Acid/blood
8.
Article in English | MEDLINE | ID: mdl-25905021

ABSTRACT

BACKGROUND: Ultrasound imaging is a valuable tool in exercise and sport science research, and has been used to visualize and track real-time movement of muscles and tendons, estimate hydration status in body tissues, and most recently, quantify skeletal muscle glycogen content. In this validation study, direct glycogen quantification from pre-and post-exercise muscle biopsy samples was compared with glycogen content estimates made through a portable, diagnostic high-frequency ultrasound and cloud-based software system (MuscleSound®, Denver, CO). METHODS: Well-trained cyclists (N = 20, age 38.4 ± 6.0 y, 351 ± 57.6 wattsmax) participated in a 75-km cycling time trial on their own bicycles using CompuTrainer Pro Model 8001 trainers (RacerMate, Seattle, WA). Muscle biopsy samples and ultrasound measurements were acquired pre- and post-exercise. Specific locations on the vastus lateralis were marked, and a trained technician used a 12 MHz linear transducer and a standard diagnostic high resolution GE LOGIQ-e ultrasound machine (GE Healthcare, Milwaukee, WI) to make three ultrasound measurements. Ultrasound images were pre-processed to isolate the muscle area under analysis, with the mean pixel intensity averaged from the three scans and scaled (0 to 100 scale) to create the glycogen score. Pre- and post-exercise muscle biopsy samples were acquired at the vastus lateralis location (2 cm apart) using the suction-modified percutaneous needle biopsy procedure, and analyzed for glycogen content. RESULTS: The 20 cyclists completed the 75-km cycling time trial in 168 ± 26.0 minutes at a power output of 193 ± 57.8 watts (54.2 ± 9.6% wattsmax). Muscle glycogen decreased 77.2 ± 17.4%, with an absolute change of 71.4 ± 23.1 mmol glycogen per kilogram of muscle. The MuscleSound® change score at the vastus lateralis site correlated highly with change in measured muscle glycogen content (R = 0.92, P < 0.001). CONCLUSIONS: MuscleSound® change scores acquired from an average of three ultrasound scans at the vastus lateralis site correlated significantly with change in vastus lateralis muscle glycogen content. These data support the use of the MuscleSound® system for accurately and non-invasively estimating exercise-induced decreases in vastus lateralis skeletal muscle glycogen content.

9.
PLoS One ; 9(11): e113725, 2014.
Article in English | MEDLINE | ID: mdl-25409020

ABSTRACT

OBJECTIVES: Pistachio nut ingestion (3 oz./d, two weeks) was tested for effects on exercise performance and 21-h post-exercise recovery from inflammation, oxidative stress, immune dysfunction, and metabolite shifts. METHODS: Using a randomized, crossover approach, cyclists (N = 19) engaged in two 75-km time trials after 2-weeks pistachio or no pistachio supplementation, with a 2-week washout period. Subjects came to the lab in an overnight fasted state, and ingested water only or 3 oz. pistachios with water before and during exercise. Blood samples were collected 45 min pre-exercise, and immediately post-, 1.5-h post-, and 21-h post-exercise, and analyzed for plasma cytokines, C-reactive protein (CRP), F2-isoprostanes (F2-IsoP), granulocyte phagocytosis (GPHAG) and oxidative burst activity (GOBA), and shifts in metabolites. RESULTS: Performance time for the 75-km time trial was 4.8% slower under pistachio conditions (2.84 ± 0.11 and 2.71 ± 0.07 h, respectively, P = 0.034). Significant time effects were shown for plasma cytokines, CRP, F2-IsoP, GPHAG, and GOBA, with few group differences. Metabolomics analysis revealed 423 detectable compounds of known identity, with significant interaction effects for 19 metabolites, especially raffinose, (12Z)-9,10-Dihydroxyoctadec-12-enoate (9,10-DiHOME), and sucrose. Dietary intake of raffinose was 2.19 ± 0.15 and 0.35 ± 0.08 mg/d during the pistachio and no pistachio periods, and metabolomics revealed that colon raffinose and sucrose translocated to the circulation during exercise due to increased gut permeability. The post-exercise increase in plasma raffinose correlated significantly with 9,10-DiHOME and other oxidative stress metabolites. CONCLUSIONS: In summary, 2-weeks pistachio nut ingestion was associated with reduced 75-km cycling time trial performance and increased post-exercise plasma levels of raffinose, sucrose, and metabolites related to leukotoxic effects and oxidative stress. TRIAL REGISTRATION: ClinicalTrials.gov NCT01821820.


Subject(s)
Athletes , Bicycling , Inflammation , Oxidative Stress , Pistacia/metabolism , Adult , C-Reactive Protein/analysis , Cross-Over Studies , Cytokines/blood , Dietary Supplements , Exotoxins/pharmacology , F2-Isoprostanes/blood , Granulocytes/cytology , Humans , Intestinal Mucosa/metabolism , Male , Metabolomics , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Permeability/drug effects , Phagocytosis/drug effects , Physical Exertion , Pistacia/chemistry , Raffinose/analysis , Raffinose/pharmacology , Sucrose/analysis , Sucrose/pharmacology
10.
J Vis Exp ; (91): 51812, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25285722

ABSTRACT

The percutaneous biopsy technique enables researchers and clinicians to collect skeletal muscle tissue samples. The technique is safe and highly effective. This video describes the percutaneous biopsy technique using a modified Bergström needle to obtain skeletal muscle tissue samples from the vastus lateralis of human subjects. The Bergström needle consists of an outer cannula with a small opening ('window') at the side of the tip and an inner trocar with a cutting blade at the distal end. Under local anesthesia and aseptic conditions, the needle is advanced into the skeletal muscle through an incision in the skin, subcutaneous tissue, and fascia. Next, suction is applied to the inner trocar, the outer trocar is pulled back, skeletal muscle tissue is drawn into the window of the outer cannula by the suction, and the inner trocar is rapidly closed, thus cutting or clipping the skeletal muscle tissue sample. The needle is rotated 90° and another cut is made. This process may be repeated three more times. This multiple cutting technique typically produces a sample of 100-200 mg or more in healthy subjects and can be done immediately before, during, and after a bout of exercise or other intervention. Following post-biopsy dressing of the incision site, subjects typically resume their activities of daily living right away and can fully participate in vigorous physical activity within 48-72 hr. Subjects should avoid heavy resistance exercise for 48 hr to reduce the risk of herniation of the muscle through the incision in the fascia.


Subject(s)
Biopsy, Needle/methods , Muscle, Skeletal/cytology , Athletes , Biopsy, Needle/instrumentation , Exercise/physiology , Humans , Male , Muscle, Skeletal/pathology , Needles , Randomized Controlled Trials as Topic
11.
Am J Physiol Regul Integr Comp Physiol ; 307(1): R68-74, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24760997

ABSTRACT

Bioactive oxidized linoleic acid metabolites (OXLAMs) include 13- and 9-hydroxy-octadecadienoic acid (13-HODE + 9-HODE) and have been linked to oxidative stress, inflammation, and numerous pathological and physiological states. The purpose of this study was to measure changes in plasma 13-HODE + 9-HODE following a 75-km cycling bout and identify potential linkages to linoleate metabolism and established biomarkers of oxidative stress (F2-isoprostanes) and inflammation (cytokines) using a metabolomics approach. Trained male cyclists (N = 19, age 38.0 ± 1.6 yr, wattsmax 304 ± 10.5) engaged in a 75-km cycling time trial on their own bicycles using electromagnetically braked cycling ergometers (2.71 ± 0.07 h). Blood samples were collected preexercise, immediately post-, 1.5 h post-, and 21 h postexercise, and analyzed for plasma cytokines (IL-6, IL-8, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor), F2-isoprostanes, and shifts in metabolites using global metabolomics procedures with gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS). 13-HODE + 9-HODE increased 3.1-fold and 1.7-fold immediately post- and 1.5 h postexercise (both P < 0.001) and returned to preexercise levels by 21-h postexercise. Post-75-km cycling plasma levels of 13-HODE + 9-HODE were not significantly correlated with increases in plasma cytokines but were positively correlated with postexercise F2-isoprostanes (r = 0.75, P < 0.001), linoleate (r = 0.54, P = 0.016), arachidate (r = 0.77, P < 0.001), 12,13-dihydroxy-9Z-octadecenoate (12,13-DiHOME) (r = 0.60, P = 0.006), dihomo-linolenate (r = 0.57, P = 0.011), and adrenate (r = 0.56, P = 0.013). These findings indicate that prolonged and intensive exercise caused a transient, 3.1-fold increase in the stable linoleic acid oxidation product 13-HODE + 9-HODE and was related to increases in F2-isoprostanes, linoleate, and fatty acids in the linoleate conversion pathway. These data support the use of 13-HODE + 9-HODE as an oxidative stress biomarker in acute exercise investigations.


Subject(s)
Bicycling , Energy Metabolism , Linoleic Acids, Conjugated/blood , Linoleic Acids/blood , Metabolomics , Physical Exertion , Adult , Biomarkers/blood , Chromatography, High Pressure Liquid , Cytokines/blood , F2-Isoprostanes/blood , Gas Chromatography-Mass Spectrometry , Humans , Inflammation Mediators/blood , Male , Metabolomics/methods , Middle Aged , Oxidation-Reduction , Oxidative Stress , Tandem Mass Spectrometry , Time Factors
12.
Appl Physiol Nutr Metab ; 39(3): 381-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24552382

ABSTRACT

A freeze-dried fruit and vegetable juice powder (JUICE) was investigated as a countermeasure nutritional strategy to exercise-induced inflammation, oxidative stress, and immune perturbations in trained cyclists. Thirty-four cyclists (25 male, 9 female) were randomized to control (nonJUICE) or JUICE for 17 days. JUICE provided 230 mg·day(-1) of flavonoids, doubling the typical adult daily intake. During a 3-d period of intensified exercise (days 15-17), subjects cycled at 70%-75% V̇O2max for 2.25 h per day, followed by a 15-min time trial. Blood samples were collected presupplementation, post supplementation (pre-exercise), and immediately and 14-h post exercise on the third day of exercise. Samples were analyzed for inflammation (interleukin (IL)-6, IL-8; tumor necrosis factor alpha (TNFα); monocyte chemoattractant protein-1 (MCP-1)), oxidative stress (oxygen radical absorbance capacity (ORAC), ferric reducing ability of plasma (FRAP), reduced and oxidized glutathione, protein carbonyls), and innate immune function (granulocyte (G-PHAG) and monocyte (M-PHAG) phagocytosis and oxidative burst activity). A 2 (group) × 4 (time points) repeated measures ANOVA revealed significant time effects due to 3 days of exercise for IL-6 (396% increase), IL-8 (78% increase), TNFα (12% increase), MCP-1 (30% increase), G-PHAG (38% increase), M-PHAG (36% increase), FRAP (12.6% increase), ORAC (11% decrease at 14 h post exercise), and protein carbonyls (82% increase at 14 h post exercise) (p < 0.01). No significant interaction effects were found for any of the physiological measures. Although providing 695 gallic acid equivalents of polyphenols per day, JUICE treatment for 17 days did not change exercise-induced alterations in inflammation and oxidative stress or immune function in trained cyclists after a 3-day period of overreaching.


Subject(s)
Beverages , Bicycling/physiology , Exercise/physiology , Fruit , Inflammation/immunology , Inflammation/metabolism , Oxidative Stress , Vegetables , Adult , Female , Flavonoids/administration & dosage , Freezing , Humans , Male , Polyphenols/administration & dosage
13.
J Sports Sci ; 32(7): 670-9, 2014.
Article in English | MEDLINE | ID: mdl-24117183

ABSTRACT

Incidence of vitamin D deficiency is increasing worldwide. The purpose of this study was to determine if supplementation with vitamin D2 from Portobello mushroom powder would enhance skeletal muscle function and attenuate exercise-induced muscle damage in low vitamin D status high school athletes. Participants were randomised to Portobello mushroom powder (600 IU/d vitamin D2) or placebo for 6 weeks. Participants then completed a 1.5-h exercise session designed to induce skeletal muscle damage. Blood samples and measures of skeletal muscle function were taken pre-supplementation, post-supplementation/pre-exercise and post-exercise. Six weeks supplementation with vitamin D2 increased serum 25(OH)D2 by 9.9-fold and decreased serum 25(OH)D3 by 28%. Changes in skeletal muscle function and circulating markers of skeletal muscle damage did not differ between groups. In conclusion, 600 IU/d vitamin D2 increased 25(OH)D2 with a concomitant decrease in 25(OD)D3, with no effect on muscular function or exercise-induced muscle damage in high school athletes.


Subject(s)
Agaricus/chemistry , Dietary Supplements , Exercise/physiology , Muscle, Skeletal/drug effects , Muscular Diseases/blood , Vitamin D Deficiency/blood , Vitamin D/pharmacology , 25-Hydroxyvitamin D 2/blood , Adolescent , Athletes , Biological Products/pharmacology , Biological Products/therapeutic use , Calcifediol/blood , Humans , Male , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/prevention & control , Schools , Sports , Vitamin D/blood , Vitamin D/therapeutic use , Vitamins/blood , Vitamins/pharmacology , Vitamins/therapeutic use
14.
Brain Behav Immun ; 39: 180-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24055861

ABSTRACT

Functional overreaching has been linked to alterations in immunity and host pathogen defense, but little is known as to whether or not running and cycling evoke different responses. This study compared inflammation, muscle damage and soreness, and innate immune function responses to a 3-day period of intensified exercise in trained long distance runners (N=13, age 34.4±2.4year) and cyclists (N=22, age 36.6±1.7year, P=0.452). Upper respiratory tract infection (URTI) symptomatology was monitored for 12weeks using the Wisconsin Upper Respiratory Symptom Survey (WURSS), and subjects from both athletic groups came to the lab during week five and exercised 2.5h/day for 3days in a row at 70% VO2max. Blood samples were collected before and after the 3-day period of exercise, with recovery samples collected 1-, 14-, and 38h-post-exercise. Samples were analyzed for muscle damage [creatine kinase (CK), myoglobin (MYO)], inflammation (CRP, IL-6, IL-8, IL-10, MCP), and innate immunity [granulocyte and monocyte phagocytosis (GR-PHAG and MO-PHAG) and oxidative burst activity (GR-OBA and MO-OBA)]. Runners compared to cyclists experienced significantly more muscle damage (CK 133% and MYO 404% higher post-3days exercise), inflammation (CRP 87%, IL-6 256%, IL 8 61%, IL-10 32%, MCP 29%), and delayed onset of muscle soreness (DOMS, 87%). The 3-day period of exercise caused significant downturns in GR-PHAG, MO-PHAG, GR-OBA, MO-OBA by 14- and 38h-recovery, but the pattern of change did not differ between groups. No group differences were measured for 12-week URTI severity (18.3±5.6 and 16.6±4.0, P=0.803) and symptom scores (33.4±12.6 and 24.7±5.8, P=0.477). These data indicate that a 3-day period of functional overreaching results in substantially more muscle damage and soreness, and systemic inflammation in runners compared to cyclists, but without group differences for 12-week URTI symptomatology and post-exercise decrements in innate immune function.


Subject(s)
Exercise/physiology , Immunity, Innate/physiology , Running/physiology , Adult , Female , Granulocytes/physiology , Humans , Inflammation/blood , Male , Middle Aged , Monocytes/physiology , Myalgia/immunology , Respiratory Burst , Respiratory Tract Infections/immunology , Young Adult
15.
Nutrients ; 6(1): 63-75, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24362707

ABSTRACT

This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n=13) and placebo (n=15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (p<0.001, p=0.036, respectively), with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p=0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p<0.001), with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day) significantly increased 25(OH)D2 and decreased 25(OH)D3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise.


Subject(s)
Athletes , Dietary Supplements , Ergocalciferols/administration & dosage , Exercise/physiology , Muscle, Skeletal/physiology , Adult , Agaricales/chemistry , Automobile Driving , Creatine Kinase/blood , Double-Blind Method , Ergocalciferols/blood , Humans , Lactate Dehydrogenases/blood , Muscle Contraction/drug effects , Myalgia/physiopathology , Myoglobin/blood , Sports
16.
Nutr J ; 12(1): 154, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24274358

ABSTRACT

BACKGROUND: The purpose of this study was to assess the effect of 8-weeks ingestion of a commercialized joint pain dietary supplement (Instaflex™ Joint Support, Direct Digital, Charlotte, NC) compared to placebo on joint pain, stiffness, and function in adults with self-reported joint pain. Instaflex™ is a joint pain supplement containing glucosamine sulfate, methylsufonlylmethane (MSM), white willow bark extract (15% salicin), ginger root concentrate, boswella serrata extract (65% boswellic acid), turmeric root extract, cayenne, and hyaluronic acid. METHODS: Subjects included 100 men and women, ages 50-75 years, with a history (>3 months) of joint pain, and were randomized to Instaflex™ or placebo (3 colored gel capsules per day for 8 weeks, double-blind administration). Subjects agreed to avoid the use of non-steroidal anti-inflammatory drugs (NSAID) and all other medications and supplements targeted for joint pain. Primary outcome measures were obtained pre- and post-study and included joint pain severity, stiffness, and function (Western Ontario and McMaster Universities [WOMAC]), and secondary outcome measures included health-related quality of life (Short Form 36 or SF-36), systemic inflammation (serum C-reactive protein and 9 plasma cytokines), and physical function (6-minute walk test). Joint pain symptom severity was assessed bi-weekly using a 12-point Likert visual scale (12-VS). RESULTS: Joint pain severity was significantly reduced in Instaflex™ compared to placebo (8-week WOMAC, ↓37% versus ↓16%, respectively, interaction effect P = 0.025), with group differences using the 12-VS emerging by week 4 of the study (interaction effect, P = 0.0125). Improvements in ability to perform daily activities and stiffness scores in Instaflex™ compared to placebo were most evident for the 74% of subjects reporting knee pain (8-week WOMAC function score, ↓39% versus ↓14%, respectively, interaction effect P = 0.027; stiffness score, ↓30% versus ↓12%, respectively, interaction effect P = 0.081). Patterns of change in SF-36, systemic inflammation biomarkers, and the 6-minute walk test did not differ significantly between groups during the 8-week study CONCLUSIONS: Results from this randomized, double blind, placebo-controlled community trial support the use of the Instaflex™ dietary supplement in alleviating joint pain severity in middle-aged and older adults, with mitigation of difficulty performing daily activities most apparent in subjects with knee pain.


Subject(s)
Arthralgia/drug therapy , Dietary Supplements , Glucosamine/administration & dosage , Plant Extracts/administration & dosage , Aged , Biomarkers/blood , C-Reactive Protein/metabolism , Curcuma , Double-Blind Method , Female , Zingiber officinale/chemistry , Humans , Hyaluronic Acid/administration & dosage , Interleukin-10/blood , Interleukin-6/blood , Interleukin-8/blood , Male , Middle Aged , Plant Bark/chemistry , Plant Roots/chemistry , Reproducibility of Results , Retrospective Studies , Salix/chemistry , Surveys and Questionnaires , Treatment Outcome , Triterpenes/administration & dosage , Tumor Necrosis Factor-alpha/blood
17.
Br J Nutr ; 109(11): 1923-33, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23151341

ABSTRACT

Quercetin, a flavonol in fruits and vegetables, has been demonstrated to have antioxidant, anti-inflammatory and immunomodulating influences. The purpose of the present study was to determine if quercetin, vitamin C and niacin supplements (Q-500 = 500 mg/d of quercetin, 125 mg/d of vitamin C and 5 mg/d of niacin; Q-1000 = 1000 mg/d of quercetin, 250 mg/d of vitamin C and 10 mg/d of niacin) would alter small-molecule metabolite profiles and serum quercetin conjugate levels in adults. Healthy adults (fifty-eight women and forty-two men; aged 40-83 years) were assigned using a randomised double-blinded placebo-controlled trial to one of three supplement groups (Q-1000, Q-500 or placebo). Overnight fasted blood samples were collected at 0, 1 and 3 months. Quercetin conjugate concentrations were measured using ultra-performance liquid chromatography (UPLC)-MS/MS, and metabolite profiles were measured using two MS platforms (UPLC-quadrupole time-of-flight MS (TOFMS) and GC-TOFMS). Statistical procedures included partial least square discriminant analysis (PLS-DA) and linear mixed model analysis with repeated measures. After accounting for age, sex and BMI, quercetin supplementation was associated with significant shifts in 163 metabolites/quercetin conjugates (false discovery rate, P<0·05). The top five metabolite shifts were an increase in serum guaiacol, 2-oxo-4-methylthiobutanoic acid, allocystathionine and two bile acids. Inflammatory and oxidative stress metabolites were not affected. PLS-DA revealed a clear separation only between the 1000 mg/d and placebo groups (Q(2)Y = 0·763). The quercetin conjugate, isorhamnetin-3-glucuronide, had the highest concentration at 3 months followed by quercetin-3-glucuronide, quercetin-3-sulphate and quercetin diglucuronide. In human subjects, long-term quercetin supplementation exerts disparate and wide-ranging metabolic effects and changes in quercetin conjugate concentrations. Metabolic shifts were apparent at the 1000 mg/d dose; further research is required to understand the health implications of these shifts.


Subject(s)
Antioxidants/administration & dosage , Antioxidants/pharmacology , Quercetin/administration & dosage , Quercetin/pharmacology , Adult , Aged , Aged, 80 and over , Antioxidants/pharmacokinetics , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacokinetics , Dietary Supplements , Dose-Response Relationship, Drug , Drug Interactions , Female , Humans , Male , Middle Aged , Niacin/administration & dosage , Niacin/pharmacokinetics
18.
J Nutr ; 141(6): 1095-100, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21525262

ABSTRACT

The lifespan of diabetic patients is 7-8 y shorter than that of the general population because of hyperglycemia-induced vascular complications and damage to other organs such as the liver and skeletal muscle. Here, we investigated the effects of epicatechin, one of the major flavonoids in cocoa, on health-promoting effects in obese diabetic (db/db) mice (0.25% in drinking water for 15 wk) and Drosophila melanogaster (0.01-8 mmol/L in diet). Dietary intake of epicatechin promoted survival in the diabetic mice (50% mortality in diabetic control group vs. 8.4% in epicatechin group after 15 wk of treatment), whereas blood pressure, blood glucose, food intake, and body weight gain were not significantly altered. Pathological analysis showed that epicatechin administration reduced the degeneration of aortic vessels and blunted fat deposition and hydropic degeneration in the liver caused by diabetes. Epicatechin treatment caused changes in diabetic mice that are associated with a healthier and longer lifespan, including improved skeletal muscle stress output, reduced systematic inflammation markers and serum LDL cholesterol, increased hepatic antioxidant glutathione concentration and total superoxide dismutase activity, decreased circulating insulin-like growth factor-1 (from 303 ± 21 mg/L in the diabetic control group to 189 ± 21 mg/L in the epicatechin-treated group), and improved AMP-activated protein kinase-α activity in the liver and skeletal muscle. Consistently, epicatechin (0.1-8 mmol/L) also promoted survival and increased mean lifespan of Drosophila. Therefore, epicatechin may be a novel food-derived, antiaging compound.


Subject(s)
Catechin/administration & dosage , Diabetes Mellitus, Experimental/diet therapy , Dietary Supplements , Longevity/drug effects , Obesity/diet therapy , AMP-Activated Protein Kinases/metabolism , Aging/drug effects , Aging/physiology , Animals , Biomarkers/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Obesity/complications , Obesity/physiopathology
19.
Nutr Cancer ; 63(1): 55-64, 2011.
Article in English | MEDLINE | ID: mdl-21170812

ABSTRACT

Non-digestible carbohydrates (NDC(4)) have been used as a low-calorie sweetener and prebiotics that stimulate the growth of certain intestinal bacteria that support healthy colon conditions. In this study, we examined the dietary effect of commercially available NDCs on estrogen receptor positive (ER+) human breast cancer. We conducted a feeding study of fructooligosaccharides (FOSs), Fibersol 2 (F2; digestion resistant maltodextrin), Hi-Maize (HM; high amylose cornstarch), and Frutafit (FF; a range of powdered inulins) (5% in diet, w/w) to evaluate their effects on the growth of ER(+) human breast cancer (MCF-7) tumors in the presence of 17ß-estradiol (E(2)) using an athymic xenograft model. F2, HM, and FOSs supplementation significantly reduced E(2)-stimulated MCF-7 tumor growth by inhibiting cellular proliferation (Ki-67) and increasing apoptosis (M30) in tumors. F2, HM, and FOSs treatments also lowered serum E(2) level and reduced uterine weight compared to the control diet. NDCs treatments downregulated relative mRNA expression of the E(2)-responsive gene markers pS2, bcl2, bcl-xL, and cyclin D1 in MCF-7 tumors. In conclusion, the NDC intake may have a protective effect against ER(+) tumors by inhibiting cellular proliferation and increasing apoptosis.


Subject(s)
Carbohydrates/pharmacology , Estradiol/pharmacology , Mammary Neoplasms, Experimental/pathology , Neoplasms, Hormone-Dependent/pathology , Animals , Cell Line, Tumor , Cholesterol/blood , Estradiol/blood , Female , Humans , Immunohistochemistry , Mammary Neoplasms, Experimental/chemistry , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms, Hormone-Dependent/chemistry , Ovariectomy , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...