Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(7): 3284-3299, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723027

ABSTRACT

Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.


Subject(s)
Coloring Agents , DNA , DNA/chemistry , Carbocyanines/chemistry , DNA, Cruciform
2.
J Phys Chem A ; 126(31): 5107-5125, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35901315

ABSTRACT

Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.


Subject(s)
Photosynthesis , Tetrapyrroles , Electronics , Energy Transfer , Spectrum Analysis , Tetrapyrroles/chemistry
3.
ACS Appl Mater Interfaces ; 14(18): 20790-20801, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35451825

ABSTRACT

Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups. Chlorins and bacteriochlorins are ideal dopants due to their high hydrophobicity, which precludes their use as molecular probes in aqueous biological media but on the other hand prevents their leakage when doped into Pdots. Additionally, chlorins and bacteriochlorins have narrow deep red to NIR-emission bands and the wide array of synthetic modifications available for modifying their molecular structure enables tuning their emission predictably and systematically. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements show the chlorin- and bacteriochlorin-doped Pdots to be nearly spherical with an average diameter of 46 ± 12 nm. Efficient energy transfer between PFBT and the doped chlorins or bacteriochlorins decreases the PFBT donor emission to near baseline level and increases the emission of the doped dyes that serve as acceptors. The chlorin- and bacteriochlorin-doped Pdots show narrow emission bands ranging from 640 to 820 nm depending on the doped dye. The paper demonstrates the utility of the systematic chlorin and bacteriochlorin synthesis approach by preparing Pdots of varying emission peak wavelength, utilizing them to visualize multiple targets using wide-field fluorescence microscopy, binding them to secondary antibodies, and determining the binding of secondary antibody-conjugated Pdots to primary antibody-labeled receptors in plant cells. Additionally, the chlorin- and bacteriochlorin-doped Pdots show a blinking behavior that could enable their use in super-resolution imaging methods like STORM.


Subject(s)
Polymers , Quantum Dots , Microscopy, Fluorescence , Optical Imaging/methods , Polymers/chemistry , Quantum Dots/chemistry , Semiconductors
4.
ACS Omega ; 7(13): 11002-11016, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415341

ABSTRACT

Cyanine dyes represent a family of organic fluorophores with widespread utility in biological-based applications ranging from real-time PCR probes to protein labeling. One burgeoning use currently being explored with indodicarbocyanine (Cy5) in particular is that of accessing exciton delocalization in designer DNA dye aggregate structures for potential development of light-harvesting devices and room-temperature quantum computers. Tuning the hydrophilicity/hydrophobicity of Cy5 dyes in such DNA structures should influence the strength of their excitonic coupling; however, the requisite commercial Cy5 derivatives available for direct incorporation into DNA are nonexistent. Here, we prepare a series of Cy5 derivatives that possess different 5,5'-substituents and detail their incorporation into a set of DNA sequences. In addition to varying dye hydrophobicity/hydrophilicity, the 5,5'-substituents, including hexyloxy, triethyleneglycol monomethyl ether, tert-butyl, and chloro groups were chosen so as to vary the inherent electron-donating/withdrawing character while also tuning their resulting absorption and emission properties. Following the synthesis of parent dyes, one of their pendant alkyl chains was functionalized with a monomethoxytrityl protective group with the remaining hydroxyl-terminated N-propyl linker permitting rapid, same-day phosphoramidite conversion and direct internal DNA incorporation into nascent oligonucleotides with moderate to good yields using a 1 µmole scale automated DNA synthesis. Labeled sequences were cleaved from the controlled pore glass matrix, purified by HPLC, and their photophysical properties were characterized. The DNA-labeled Cy5 derivatives displayed spectroscopic properties that paralleled the parent dyes, with either no change or an increase in fluorescence quantum yield depending upon sequence.

5.
J Org Chem ; 86(13): 8755-8765, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34129326

ABSTRACT

A series of 3,5-bis(hetero)arylethenyl-substituted BODIPY derivatives have been prepared by Knoevenagel-type condensation of alkyl-substituted BODIPY with the corresponding aldehydes. 2-Pyrrolylethenyl-substituted derivatives feature near-IR emission (λem > 700 nm) with a high fluorescence quantum yield. Both the emission maxima and fluorescence quantum yields are relatively insensitive to solvent polarity, contrary to the corresponding near-IR-emitting 4-(N,N-dimethylaminophenyl)ethenyl derivatives. Alkylation at the N-pyrrolic position of the ethenyl substituent allows for the installation of the hydrophilic PEG group and afforded amphiphilic BODIPY derivatives. Overall, 2-pyrrolylethenyl-substituted BODIPY derivatives appear to be versatile fluorophores with potential applications in near-IR imaging.

6.
J Chem Phys ; 153(7): 074302, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32828083

ABSTRACT

Arrays of hydroporphyrins with boron complexes of dipyrromethene (BODIPY) are a promising platform for biomedical imaging or solar energy conversion, but their photophysical properties have been relatively unexplored. In this paper, we use time-resolved fluorescence, femtosecond transient absorption spectroscopy, and density-functional-theory calculations to elucidate solvent-dependent energy and electron-transfer processes in a series of chlorin- and bacteriochlorin-BODIPY arrays. Excitation of the BODIPY moiety results in ultrafast energy transfer to the hydroporphyrin moiety, regardless of the solvent. In toluene, energy is most likely transferred via the through-space Förster mechanism from the S1 state of BODIPY to the S2 state of hydroporphyrin. In DMF, substantially faster energy transfer is observed, which implies a contribution of the through-bond Dexter mechanism. In toluene, excited hydroporphyrin components show bright fluorescence, with quantum yield and fluorescence lifetime comparable to those of the benchmark monomer, whereas in DMF, moderate to significant reduction of both quantum yield and fluorescence lifetime are observed. We attribute this quenching to photoinduced charge transfer from hydroporphyrin to BODIPY. No direct spectral signature of the charge-separated state is observed, which suggests that either (1) the charge-separated state decays very quickly to the ground state or (2) virtual charge-separated states, close in energy to S1 of hydroporphyrin, promote ultrafast internal conversion.


Subject(s)
Boron Compounds/chemistry , Density Functional Theory , Porphyrins/chemistry , Energy Transfer , Solvents/chemistry
7.
J Org Chem ; 84(12): 7851-7862, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31117562

ABSTRACT

Photoisomerization of 3,4-di(methoxycarbonyl)-enediyne linker in hydroporphyrin (chlorin or bacteriochlorin) dyads leads to thermally stable cis isomers, where macrocycles adopt a slipped cofacial mutual geometry with an edge-to-edge distance of ∼3.6 Å (determined by density functional theory (DFT) calculations). Absorption spectra exhibit a significant splitting of the long-wavelength Qy band, which indicates a strong electronic coupling with a strength of V = ∼477 cm-1 that increases to 725 cm-1 upon metalation of hydroporphyrins. Each dyad features a broad, structureless emission band, with large Stokes shift, which is indicative of excimer formation. DFT calculations for dyads show both strong through-bond electronic coupling and through-space electronic interactions, due to the overlap of π-orbitals. Overall, geometry, electronic structure, strength of electronic interactions, and optical properties of reported dyads closely resemble those observed for photosynthetic special pairs. Dyads reported here represent a novel type of photoactive arrays with various modes of electronic interactions between chromophores. Combining through-bond and through-space coupling appears to be a viable strategy to engineer novel optical and photochemical properties in organic conjugated materials.

8.
Bioconjug Chem ; 30(1): 169-183, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30475591

ABSTRACT

Near infrared (NIR) fluorescent probes are attractive tools for biomedical in vivo imaging due to the relatively deeper tissue penetration and lower background autofluorescence. Activatable probes are turned on only after binding to their target, further improving target to background ratios. However, the number of available activatable NIR probes is limited. In this study, we introduce two types of activatable NIR fluorophores derived from bacteriochlorin: chlorin-bacteriochlorin energy-transfer dyads and boron-dipyrromethene (BODIPY)-bacteriochlorin energy-transfer dyads. These fluorophores are characterized by multiple narrow excitation bands with relatively strong emission in the NIR. Targeted bacteriochlorin-based antibody or peptide probes have been previously limited by aggregation after conjugation. Polyethylene glycol (PEG) chains were added to improve the hydrophilicity without altering pharmacokinetics of the targeting moieties. These PEGylated bacteriochlorin-based activatable fluorophores have potential as targeted activatable, multicolor NIR fluorescent probes for in vivo applications.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Neoplasms/diagnostic imaging , Optical Imaging/methods , Polyethylene Glycols/chemistry , Porphyrins/chemistry , Animals , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Heterografts , Humans , Mice
9.
J Org Chem ; 83(16): 9076-9087, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30033724

ABSTRACT

A series of chlorin monomers and dyads has been prepared to probe the effect of ethenyl vs ethynyl linkers on the electronic conjugation and optical properties in resulting derivatives. Styryl-substituted chlorins have been prepared either by a Heck reaction or by microwave-assisted olefin metathesis, while ß-ß ethenyl-linked dyads have been synthesized from the corresponding vinyl-substituted chlorin monomer using microwave-assisted olefin metathesis. It has been found that when an ethenyl linker is connected at the ß-position of chlorin it provides stronger electronic conjugation than an ethynyl one, which is manifested by a greater bathochromic shift of the longest wavelength absorption (Q y) and emission bands. Stronger electronic coupling is particularly evident for dyads, where ethenyl-linked dyad exhibits a strong near-IR absorption band emission (λabs = 707 nm, λem = 712 nm, Φf = 0.45), compared to the deep-red absorption and emission of a corresponding ethynyl-linked dyad (λabs = 689 nm, λem = 691 nm, Φf = 0.48). The reactivity of ethenyl-linked dyads with singlet oxygen is discussed as well. The results reported here provide further guidelines for molecular design of deep-red and near-IR absorbing and intensely emitting chlorin derivatives and chlorins with extended π-electronic conjugation for a variety of photonic applications.

10.
J Org Chem ; 82(24): 13068-13075, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29119786

ABSTRACT

A series of energy transfer arrays, comprising a near-IR absorbing and emitting bacteriochlorin, and BODIPY derivatives with different absorption bands in the visible region (503-668 nm) have been synthesized. Absorption band of BODIPY was tuned by installation of 0, 1, or 2 styryl substituents [2-(2,4,6-trimethoxyphenyl)ethenyl], which leads to derivatives with absorption maxima at 503, 587, and 668 nm, respectively. Efficient energy transfer (>0.90) is observed for each dyad, which is manifested by nearly exclusive emission from bacteriochlorin moiety upon BODIPY excitation. Fluorescence quantum yield of each dyad in nonpolar solvent (toluene) is comparable with that observed for corresponding bacteriochlorin monomer, and is significantly reduced in solvent of high dielectric constants (DMF), most likely by photoinduced electron transfer. Given the availability of diverse BODIPY derivatives, with absorption between 500-700 nm, BODIPY-bacteriochlorin arrays should allow for construction of near-IR emitting agents with multiple and broadly tunable absorption bands. Solvent-dielectric constant dependence of Φf in dyads gives an opportunity to construct environmentally sensitive fluorophores and probes.


Subject(s)
Boron Compounds/chemistry , Porphyrins/chemistry , Biological Assay , Boron Compounds/chemical synthesis , Infrared Rays
11.
J Org Chem ; 82(12): 6054-6070, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28516773

ABSTRACT

BODIPY-hydroporphyrin energy transfer arrays allow for development of a family of fluorophores featuring a common excitation band at 500 nm, tunable excitation band in the deep red/near-infrared window, and tunable emission. Their biomedical applications are contingent upon retaining their optical properties in an aqueous environment. Amphiphilic arrays containing PEG-substituted BODIPY and chlorins or bacteriochlorins were prepared and their optical and fluorescence properties were determined in organic solvents and aqueous surfactants. The first series of arrays contains BODIPYs with PEG substituents attached to the boron, whereas in the second series, PEG substituents are attached to the aryl at the meso positions of BODIPY. For both series of arrays, excitation of BODIPY at 500 nm results in efficient energy transfer to and bright emission of hydroporphyrin in the deep-red (640-660 nm) or near-infrared (740-760 nm) spectral windows. In aqueous solution of nonionic surfactants (Triton X-100 and Tween 20) arrays from the second series exhibit significant quenching of fluorescence, whereas properties of arrays from the first series are comparable to those observed in polar organic solvents. Reported arrays possess large effective Stokes shift (115-260 nm), multiple excitation wavelengths, and narrow, tunable deep-red/near-IR fluorescence in aqueous surfactants, and are promising candidates for a variety of biomedical-related applications.


Subject(s)
Boron Compounds/chemistry , Infrared Rays , Porphyrins/chemistry , Surface-Active Agents/chemistry , Boron Compounds/chemical synthesis , Energy Transfer , Micelles , Molecular Structure , Photochemical Processes , Polyethylene Glycols/chemistry , Water/chemistry
12.
J Org Chem ; 80(8): 3858-69, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25803423

ABSTRACT

We report here the synthesis and characterization of BODIPY-chlorin arrays containing a chlorin subunit, with tunable deep-red (641-685 nm) emission, and one or two BODIPY moieties, absorbing at 504 nm. Two types of arrays were examined: one where BODIPY moieties are attached through a phenylacetylene linker at the 13- or 3,13-positions of chlorin, and a second type where BODIPY is attached at the 10-position of chlorin through an amide linker. Each of the examined arrays exhibits an efficient (≥0.80) energy transfer from BODIPY to the chlorin moiety in both toluene and DMF and exhibits intense fluorescence of chlorin upon excitation of BODIPY at ∼500 nm. Therefore, the effective Stokes shift in such arrays is in the range of 140-180 nm. Dyads with BODIPY attached at the 10-position of chlorin exhibit a bright fluorescence in a range of solvents with different polarities (i.e., toluene, MeOH, DMF, and DMSO). In contrast to this, some of the arrays in which BODIPY is attached at the 3- or at both 3,13-positons of chlorin exhibit significant reduction of fluorescence in polar solvents. Overall, dyads where BODIPY is attached at the 10-position of chlorin exhibit ∼5-fold brighter fluorescence than corresponding chlorin monomers, upon excitation at 500 nm.


Subject(s)
Boron Compounds/chemistry , Porphyrins/chemistry , Fluorescence , Molecular Structure , Quantum Theory
13.
J Med Chem ; 57(9): 3724-36, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24730984

ABSTRACT

A structure-activity relationship study for a series of vitamin D3-based (VD3) analogues that incorporate aromatic A-ring mimics with varying functionality has provided key insight into scaffold features that result in potent, selective Hedgehog (Hh) pathway inhibition. Three analogue subclasses containing (1) a single substitution at the ortho or para position of the aromatic A-ring, (2) a heteroaryl or biaryl moiety, or (3) multiple substituents on the aromatic A-ring were prepared and evaluated. Aromatic A-ring mimics incorporating either single or multiple hydrophilic moieties on a six-membered ring inhibited the Hh pathway in both Hh-dependent mouse embryonic fibroblasts and cultured cancer cells (IC50 values 0.74-10 µM). Preliminary studies were conducted to probe the cellular mechanisms through which VD3 and 5, the most active analogue, inhibit Hh signaling. These studies suggested that the anti-Hh activity of VD3 is primarily attributed to the vitamin D receptor, whereas 5 affects Hh inhibition through a separate mechanism.


Subject(s)
Cholecalciferol/analogs & derivatives , Hedgehog Proteins/antagonists & inhibitors , Animals , Cells, Cultured , Cholecalciferol/chemistry , Drug Evaluation, Preclinical , Hedgehog Proteins/metabolism , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL