Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Commun Chem ; 7(1): 66, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548895

ABSTRACT

Oxide-derived copper (OD-Cu) materials exhibit extraordinary catalytic activities in the electrochemical carbon dioxide reduction reaction (CO2RR), which likely relates to non-metallic material constituents formed in transitions between the oxidized and the reduced material. In time-resolved operando experiment, we track the structural dynamics of copper oxide reduction and its re-formation separately in the bulk of the catalyst material and at its surface using X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy. Surface-species transformations progress within seconds whereas the subsurface (bulk) processes unfold within minutes. Evidence is presented that electroreduction of OD-Cu foams results in kinetic trapping of subsurface (bulk) oxide species, especially for cycling between strongly oxidizing and reducing potentials. Specific reduction-oxidation protocols may optimize formation of bulk-oxide species and thereby catalytic properties. Together with the Raman-detected surface-adsorbed *OH and C-containing species, the oxide species could collectively facilitate *CO adsorption, resulting an enhanced selectivity towards valuable C2+ products during CO2RR.

2.
Small ; : e2309749, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368266

ABSTRACT

Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3 ) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.

3.
Chem Sci ; 15(2): 528-533, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179538

ABSTRACT

The N3O macrocycle of the 12-TMCO ligand stabilizes a high spin (S = 5/2) [FeIII(12-TMCO)(OOtBu)Cl]+ (3-Cl) species in the reaction of [FeII(12-TMCO)(OTf)2] (1-(OTf)2) with tert-butylhydroperoxide (tBuOOH) in the presence of tetraethylammonium chloride (NEt4Cl) in acetonitrile at -20 °C. In the absence of NEt4Cl the oxo-iron(iv) complex 2 [FeIV(12-TMCO)(O)(CH3CN)]2+ is formed, which can be further converted to 3-Cl by adding NEt4Cl and tBuOOH. The role of the cis-chloride ligand in the stabilization of the FeIII-OOtBu moiety can be extended to other anions including the thiolate ligand relevant to the enzyme superoxide reductase (SOR). The present study underlines the importance of subtle electronic changes and secondary interactions in the stability of the biologically relevant metal-dioxygen intermediates. It also provides some rationale for the dramatically different outcomes of the chemistry of iron(iii)peroxy intermediates formed in the catalytic cycles of SOR (Fe-O cleavage) and cytochrome P450 (O-O bond lysis) in similar N4S coordination environments.

4.
Chempluschem ; : e202300692, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052725

ABSTRACT

The title compound was synthesized by Ullmann cross-coupling in low yield as the first representative of [n]phenylene containing hydrocarbon and fluorocarbon rings. Stille/Suzuki-Miyaura cross-coupling reactions, as well as substitution of fluorine in suitable starting compounds, failed to give the same product. The geometric and electronic structures of the title compound were studied by X-ray diffraction, cyclic voltammetry and density functional theory calculations, together with Hirshfeld surface and reduced density gradient analyses. The crystal structure features head-to-tail π-stacking and other fluorine-related secondary bonding interactions. From the nucleus-independent chemical shifts descriptor, the four-membered ring of the title compound is antiaromatic, and the six-membered rings are aromatic. The Janus molecule is highly polarized; and the six-membered fluoro- and hydrocarbon rings are Lewis π-acidic and π-basic, respectively. The electrochemically-generated radical cation of the title compound is long-lived as characterized by electron paramagnetic resonance, whereas the radical anion is unstable in solution. The title compound reveals electrical properties of an insulator. On expanding its molecular scaffold towards partially fluorinated [n]phenylenes (n≥2), the properties presumably can be transformed into those of semiconductors. In this context, the title compound is suggested as a prototype scaffold for ambipolar materials for organic electronics and spintronics.

5.
Chem Commun (Camb) ; 59(47): 7267-7270, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37226548

ABSTRACT

The kinetically stabilized group 14 cations [RindEMe2][B(C6F5)4] (E = Si, Sn, Pb) were prepared and fully characterized (Rind = dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9''-fluorene). The deshielded heteronuclear NMR chemical shifts (δ(29Si) = 160.4, δ(119Sn) = 619.9, δ(207Pb) = 1549.5) are indicative of the low coordination numbers.


Subject(s)
Fluorenes , Lead , Magnetic Resonance Spectroscopy , Cations
6.
Phys Chem Chem Phys ; 25(7): 5656-5662, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36734164

ABSTRACT

Methane (CH4) can be captured in silico with a light atom molecule containing only C, H, Si, O, and B atoms, respectively. A tripodal peri-substituted ligand system was employed, namely, [(5-Ph2B-xan-4-)3Si]H (1, xan = xanthene), which after hydride abstraction (1+) carries four Lewis acidic sites within the cationic cage structure. In a previous study, this system was shown to be able to capture noble gas atoms He-Kr (Mebs & Beckmann 2022). In the corresponding methane complex, 1+CH4, a polarized Si+⋯CH4 contact of 2.289 Å as well as series of (H3)CH⋯O/CPh hydrogen bonds enforce spatial CH4 fixation (the molecule obeys C3-symmetry) and slight activation. A trigonal-pyramidal Si-CHeq3-Hax local geometry is thereby approached with Hax-C-Heq angles decreased to 103.7°. All attempts to replace the Lews acidic -BPh2 fragments in 1 with basic -PR2 (R = Ph, tBu) fragments indeed increased intra-molecular hydrogen bonding between host molecule and CH4, and thus caused stronger activation of the latter, however ultimately resulted in the formation of energetically favorable quenched structures with short P-Si contacts, making CH4 binding hard to achieve. The electronic situation of two hypothetic methane complexes, 1+CH4 and [(5-tBu2P-xan-4-)3SiCH4]+ (2+CH4), was determined by a set of calculated real-space bonding indicators (RSBIs) including the Atoms-In-Molecules (AIM), non-covalent interactions index (NCI), and electron localizability indicator (ELI-D) methods, highlighting crucial differences in the level of activation. The proposed ligand systems serve as blueprints for a more general structural design with adjustable trigonal ligand systems in which central atom, spacer fragment, and functional peri-partner can be varied to facilitate different chemical tasks.

7.
Chempluschem ; 88(3): e202200429, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36670087

ABSTRACT

The newly prepared and fully characterized stibenium and bismuthenium ions [Rind MesE]+ (E=Sb, Bi; Rind =dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9''-fluorene) were rigorously compared to the previously communicated phosphenium and arsenium ions (E=P, As) as well as the bis(m-terphenyl) pnictogenium ions [(2,6-Mes2 C6 H3 )2 E]+ (E=Sb, Bi). It is demonstrated that the choice of the aryl substituents dramatically effects the molecular structures (e. g. the primary E-C bond lengths) and the electronic structures (e. g. the energy of the LUMOs).

8.
Adv Mater ; 35(11): e2208337, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36528302

ABSTRACT

A hydrogen processing strategy is developed to enable bulk LaNi5 to attain high activity and long-term stability toward the electrocatalytic oxygen evolution reaction (OER). By a combination of in situ Raman and quasi in situ X-ray absorption (XAS) spectra, secondary-electron-excited scanning transmission electron microscopy (STEM) patterns as well as the Rietveld method and density functional theory (DFT) calculations, it is discovered that hydrogen-induced lattice distortion, grain refinement, and particle cracks dictate the effective reconstruction of the LaNi5 surface into a porous hetero-nanoarchitecture composed of uniformly confined active γ-NiOOH nanocrystals by La(OH)3 layer in the alkaline OER process. This significantly optimizes the charge transfer, structural integrity, active-site exposure, and adsorption energy toward the reaction intermediates. Benefiting from these merits, the overpotential (322 mV) at 100 mA cm-2 for the hydrogen-processed OER catalyst deposited on nickel foam is reduced by 104 mV as compared to the original phase. Notably, it exhibits remarkable stability for 10 days at an industrial-grade current density of more than 560 mA cm-2 in alkaline media.

9.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36541062

ABSTRACT

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Subject(s)
Iron , Oxygen , Iron/chemistry , Spectrum Analysis , Crystallography, X-Ray , Oxygen/chemistry , Oxidation-Reduction
10.
Angew Chem Int Ed Engl ; 62(12): e202217076, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36583430

ABSTRACT

In class Ib ribonucleotide reductases (RNRs) a dimanganese(II) cluster activates superoxide (O2 ⋅- ) rather than dioxygen (O2 ), to access a high valent MnIII -O2 -MnIV species, responsible for the oxidation of tyrosine to tyrosyl radical. In a biomimetic approach, we report the synthesis of a thiolate-bound dimanganese complex [MnII 2 (BPMT)(OAc)2 ](ClO)4 (BPMT=(2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-methylthiophenolate) (1) and its reaction with O2 ⋅- to form a [(BPMT)MnO2 Mn]2+ complex 2. Resonance Raman investigation revealed the presence of an O-O bond in 2, while EPR analysis displayed a 16-line St =1/2 signal at g=2 typically associated with a MnIII MnIV core, as detected in class Ib RNRs. Unlike all other previously reported Mn-O2 -Mn complexes, generated by O2 ⋅- activation at Mn2 centers, 2 proved to be a capable electrophilic oxidant in aldehyde deformylation and phenol oxidation reactions, rendering it one of the best structural and functional models for class Ib RNRs.

11.
Chemistry ; 29(11): e202203498, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36416222

ABSTRACT

Sterically encumbered bis(m-terphenyl)chalcogenides, (2,6-Mes2 C6 H3 )2 E (E=S, Se, Te) were obtained by the reaction of the chalcogen tetrafluorides, EF4 , with three equivalents of m-terphenyl lithium, 2,6-Mes2 C6 H3 Li. The single-electron oxidation of (2,6-Mes2 C6 H3 )2 Te using XeF2 /K[B(C6 F5 )4 ] afforded the radical cation [(2,6-Mes2 C6 H3 )2 Te][B(C6 F5 )4 ] that was isolated and fully characterized. The electrochemical oxidation of the lighter homologs (2,6-Mes2 C6 H3 )2 E (E=S, Se) was irreversible and impaired by rapid decomposition.

12.
Chemphyschem ; 24(6): e202200621, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36416275

ABSTRACT

N2 can be stepwise converted in silico into one molecule NH3 and a secondary amide with a bond activator molecule consisting only of light main group elements. The proposed N2 -activating pincer-related compound carries a silyl ion (Si(+) ) center as well as three Lewis acidic (-BF2 ) and three Lewis basic (-PMe2 ) sites, providing an efficient binding pocket for gaseous N2 within the framework of intramolecular frustrated Lewis pairs (FLP). In addition, it exhibits supportive secondary P-B and F⋅⋅⋅B contacts, which stabilize the structure. In the PSi(+) -N-N-BP environment the N≡N triple bond is extended from 1.09 Što remarkable 1.43 Å, resembling a N-N single bond. The strongly activated N-N-fragment is prone to subsequent hydride addition and protonation steps, resulting in the energy efficient transfer of two hydrogen equivalents. The next hydride added causes the release of one molecule NH3 , but leaves the ligand system as poisoned R3 Si(+) -NH2 -PMe2 or R3 Si(+) -NH3 dead-end states behind. The study indicates that approximately tetrahedral constrained SiBP2 -pockets are capable to activate N2 , whereas the acid-rich SiB3 - and SiB2 P-pocktes, as well as the base-rich SiP3 -pockets fail, hinting towards the high relevance of the acid-base proportion and relative orientation. The electronic structure of the N2 -activated state is compared to the corresponding state of a recently published peri-substituted bond activator molecule featuring a PSi(+) -N-N-Si(+) P site (S. Mebs, J. Beckmann, Physical Chemistry Chemical Physics 2022, 24, 20953-20967).

13.
Angew Chem Int Ed Engl ; 62(6): e202214074, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36378951

ABSTRACT

In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.

14.
Adv Mater ; 34(50): e2207494, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36189873

ABSTRACT

Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short-range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2 O)2 [B2 P2 O8 (OH)2 ]·H2 O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long-range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass-transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near-neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm-2 at 65 °C for 1 month without degrading performance.

15.
Phys Chem Chem Phys ; 24(35): 20968-20979, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36053150

ABSTRACT

Noble gas atoms (Ng = He, Ne, Ar, and Kr) can be captured in silico with a light atom molecule containing only C, H, Si, O, and B atoms. Extensive density functional theory (DFT) calculations on series of peri-substituted scaffolds indicate that confined spaces (voids) capable to energy efficiently encapsulate and bind Ng atoms are accessible by design of a tripodal peri-substituted ligand, namely, [(5-Ph2B-xan-4-)3Si]H (xan = xanthene) comprising (after hydride abstraction) four Lewis acidic sites within the cationic structure [(5-Ph2B-xan-4-)3Si]+. The host (ligand system) thereby provides an adoptive environment for the guest (Ng atom) to accommodate for its particular size. Whereas considerable chemical interactions are detectable between the ligand system and the heavier Ng atoms Kr and Ar in the host guest complex [(5-Ph2B-xan-4-)3Si·Ng]+, the lighter Ng atoms Ne and He are rather tolerated by the ligand system instead of being chemically bound to it, nicely highlighting the gradual onset of (weak) chemical bonding along the series He to Kr. A variety of real-space bonding indicators (RSBIs) derived from the calculated electron and pair densities provides valuable insight to the situation of an "isolated atom in a molecule" in case of He, uncovering its size and shape, whereas minute charge rearrangements caused by polarization of the outer electron shell of the larger Ng atoms results in formation of polarized interactions for Ar and Kr with non-negligible covalent bond contributions for Kr. The present study shows that noble gas atoms can be trapped by small light-atom molecules without the forceful conditions necessary using cage structures such as fullerenes, boranes and related compounds or by using super-electrophilic sites like [B12(CN)11]- if the chelating effect of several Lewis acidic sites within one molecule is employed.

16.
Phys Chem Chem Phys ; 24(35): 20953-20967, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35993454

ABSTRACT

The NN triple bond can be cleaved in silico with a light atom molecule containing only the earth abundant elements C, H, Si, and P. Extensive density functional theory (DFT) computations on various classes of peri-substituted scaffolds containing Lewis acidic and basic sites in the framework of frustrated Lewis pairs (FLP) indicate that the presence of two silyl cations and two P atoms in a flexible but not too flexible arrangement is essential for energy efficient N2-activation. The non-bonding lone-pair electrons of the P atoms thereby serve as donors towards N2, whereas the lone-pairs of N2 donate into the silyl cations. Newly formed lone-pair basins in the N2-adducts balance surplus charge. Thereby, the N-N bond distance is increased by astonishing 0.3 Å, from 1.1 Å in N2 gas to 1.4 Å in the adduct, which makes this bond prone to subsequent addition of hydride ions and protonation, forming two secondary amine sites in the process and eventually breaking the NN triple bond. Potential formation of dead-end states, in which the dications ("active states") aversively form a Lewis acid (LA)-Lewis base (LB) bond, or in which the LA and LB sites are too far away from each other to be able to capture N2, are problematic but might be circumvented by proper choice of spacer molecules, such as acenaphthalene or biphenylene, and the ligands attached to the LA and LB atoms, such as phenyl or mesityl, and by purging the reaction solutions with gaseous N2 in the initial reaction steps. Charge redistributions via N2-activation and splitting were monitored by a variety of real-space bonding indicators (RSBIs) derived from the calculated electron and electron pair densities, which provided valuable insight into the bonding situation within the different reaction steps.

17.
Dalton Trans ; 51(19): 7622-7629, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35510594

ABSTRACT

The synthesis and reactivity of the heavier group 13 phosphaketene complexes (2,6-Mes2C6H3)2EPCO (1, E = Ga; 2, E = In) were reported. The reaction of 1 and 2 with 1,2,3,4-tetramethylimidazolin-2-ylidene, IMe4, gave rise to the formation of (2,6-Mes2C6H3)2EP(O)C(IMe4) (3, E = Ga; 4 E = In; Mes = mesityl). Subsequent addition of elemental tellurium proceeded via insertion into the E-P bond and provided (2,6-Mes2C6H3)2ETeP(O)C(IMe4) (5, E = Ga; 6, E = In) comprising five-membered ETePCO-heterocycles. Compounds 1-6 were fully characterized by X-ray crystallography and heteronuclear NMR spectroscopy. The electronic structures of 1-6 were studied by DFT calculations and analyses of a complementary set of real-space bonding indicators (AIM, ELI-D, NCI) derived from the electron and pair densities, with focus on the bond characteristics of the PCO fragment.

18.
Inorg Chem ; 61(22): 8406-8418, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35609007

ABSTRACT

A PP(O)P pincer ligand based upon a peri-substituted acenaphthyl (Ace) scaffold and a secondary phosphine oxide, (5-Ph2P-Ace-6-)2P(O)H, was prepared and fully characterized including a neutron diffraction study. The reaction with [Ni(H2O)6]Cl2 and PdCl2 produced ionic metal(II) complexes [κ3-P,P',P''((5-Ph2P-Ace-6-)2P(OH))MCl]Cl, which upon addition of Et3N gave rise to zwitterionic metal(II) complexes κ3-P,P',P''((5-Ph2P-Ace-6-)2P(O))MCl (M = Ni, Pd). The reaction with Ni(COD)2 (COD = cyclooctadiene) provided the η3-cyclooctenyl Ni(II) complex κ3-P,P',P''((5-Ph2P-Ace-6-)2P(O))Ni(η3-C8H13). A detailed complementary bonding analysis of the P-H, P-O, and P-M interactions was carried out (M = Ni, Pd).

19.
Chemistry ; 28(45): e202201023, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35587690

ABSTRACT

The majority of binary chalcogen fluorides are fiercely reactive and extremely difficult to handle. Here, we show that access to crystalline donor-acceptor complexes between chalcogen difluorides (sulfur, selenium) and tetrafluorides (selenium, tellurium) with the N-heterocyclic carbene (NHC) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) is possible conveniently and safely without the need to generate the highly unstable EF2 (E=S, Se) or the very toxic and corrosive SeF4 .

20.
J Inorg Biochem ; 227: 111668, 2022 02.
Article in English | MEDLINE | ID: mdl-34923388

ABSTRACT

A rate enhancement of one to two orders of magnitude can be obtained in the aldehyde deformylation reactions by replacing the -N(CH3) groups of [NiIII(O2)(Me4[12]aneN4)]+ (Me4[12]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) and [NiIII(O2)(Me4[13]aneN4)]+ (Me4[13]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane) complexes by -NH in [NiIII(O2)([12]aneN4)]+ (2; [12]aneN4 = 1,4,7,10-tetraazacyclododecane) and [NiIII(O2)([13]aneN4)]+ (4; [13]aneN4 = 1,4,7,10-tetraazacyclotridecane). Based on detailed spectroscopic, reaction-kinetics and theoretical investigations, the higher reactivities of 2 and 4 are attributed to the changes in the secondary-sphere interactions between the [NiIII(O2)]+ and [12]aneN4 or [13]aneN4 moieties, which open up an alternative electrophilic pathway for the aldehyde oxidation reaction. Identification of primary kinetic isotope effects on the reactivity and stability of 2 when the -NH groups of the [12]aneN4 ligand are deuterated may also suggest the presence of secondary interaction between the -NH groups of [12]aneN4 and [NiIII(O2)]+ moieties, although, such interactions are not obvious in the DFT calculated optimized structure at the employed level of theory.


Subject(s)
Aldehydes/chemistry , Coordination Complexes/chemistry , Nickel/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...