Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 2414, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499587

ABSTRACT

Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.


Subject(s)
Single-Domain Antibodies , Cryoelectron Microscopy , Single-Domain Antibodies/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae Proteins/metabolism , Amino Acid Sequence
3.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38503166

ABSTRACT

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Subtilisin/metabolism , Amino Acid Sequence , Plasmodium falciparum/metabolism , Peptides , Malaria, Falciparum/parasitology , Serine Proteases/metabolism , Structure-Activity Relationship , Antimalarials/pharmacology , Antimalarials/chemistry , Protozoan Proteins , Mammals/metabolism
4.
Nat Commun ; 15(1): 331, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184686

ABSTRACT

Active nutrient uptake is fundamental for survival and pathogenicity of Gram-negative bacteria, which operate a multi-protein Ton system to transport essential nutrients like metals and vitamins. This system harnesses the proton motive force at the inner membrane to energize the import through the outer membrane, but the mechanism of energy transfer remains enigmatic. Here, we study the periplasmic domain of ExbD, a crucial component of the proton channel of the Ton system. We show that this domain is a dynamic dimer switching between two conformations representing the proton channel's open and closed states. By in vivo phenotypic assays we demonstrate that this conformational switch is essential for the nutrient uptake by bacteria. The open state of ExbD triggers a disorder to order transition of TonB, enabling TonB to supply energy to the nutrient transporter. We also reveal the anchoring role of the peptidoglycan layer in this mechanism. Herein, we propose a mechanistic model for the Ton system, emphasizing ExbD duality and the pivotal catalytic role of peptidoglycan. Sequence analysis suggests that this mechanism is conserved in other systems energizing gliding motility and membrane integrity. Our study fills important gaps in understanding bacterial motor mechanism and proposes novel antibacterial strategies.


Subject(s)
Peptidoglycan , Protons , Cell Wall , Nutrients , Bacteria
5.
Biochem Biophys Res Commun ; 695: 149400, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38160530

ABSTRACT

SETD2 (SET-domain containing protein 2) is a histone methyltransferase (HMT) of the SET family responsible for the trimethylation of K36 of histone H3, thus producing the epigenetic mark H3K36me3. Recent studies have shown that certain SET family HMTs, such as SMYD2, SMYD3 or SETDB1 can also methylate protein kinases and therefore be involved in signaling pathways. Here we provide structural and enzymatic evidence showing that SETD2 methylates the protein tyrosine kinase ACK1 in vitro. ACK1 is recognized as a major integrator of signaling from various receptor tyrosine kinases. Using ACK1 peptides and recombinant proteins, we show that SETD2 methylates the K514 residue of ACK1 generating K514 mono, di or tri-methylation. Interestingly, K514 is found in a "H3K36-like" motif of ACK1 which is known to be post-translationally modified and to be involved in protein-protein interaction. The crystal structure of SETD2 catalytic domain in complex with an ACK1 peptide further provides the structural basis for the methylation of ACK1 K514 by SETD2. Our work therefore strongly suggests that ACK1 could be a novel non-histone substrate of SETD2 and further supports that SET HMTs, such as SETD2, could be involved in both epigenetic regulations and cell signaling.


Subject(s)
Histones , Protein-Tyrosine Kinases , Protein-Tyrosine Kinases/metabolism , Histones/metabolism , Methylation , Histone-Lysine N-Methyltransferase/genetics , Protein Processing, Post-Translational
6.
bioRxiv ; 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37609138

ABSTRACT

Active nutrient uptake is fundamental for survival and pathogenicity of Gram-negative bacteria, which operate a multi-protein Ton system to transport essential nutrients like metals and vitamins. This system harnesses the proton motive force at the inner membrane to energize the import through the outer membrane, but the mechanism of energy transfer remains enigmatic. Here, we study the periplasmic domain of ExbD, a crucial component of the proton channel of the Ton system. We show that this domain is a dynamic dimer switching between two conformations representing the proton channel's open and closed states. By in vivo phenotypic assays we demonstrate that this conformational switch is essential for the nutrient uptake by bacteria. The open state of ExbD triggers a disorder to order transition of TonB, enabling TonB to supply energy to the nutrient transporter. We also reveal the anchoring role of the peptidoglycan layer in this mechanism. Herein, we propose a mechanistic model for the Ton system, emphasizing ExbD duality and the pivotal catalytic role of peptidoglycan. Sequence analysis suggests that this mechanism is conserved in other systems energizing gliding motility and membrane integrity. Our study fills important gaps in understanding bacterial motor mechanism and proposes novel antibacterial strategies.

7.
Nat Commun ; 14(1): 4851, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563123

ABSTRACT

Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.


Subject(s)
Corynebacterium glutamicum , Ketoglutarate Dehydrogenase Complex , Ketoglutarate Dehydrogenase Complex/metabolism , Cryoelectron Microscopy , Phosphorylation , Corynebacterium glutamicum/metabolism
8.
Protein Sci ; 32(8): e4703, 2023 08.
Article in English | MEDLINE | ID: mdl-37338125

ABSTRACT

Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.


Subject(s)
Adenosine Triphosphate , IMP Dehydrogenase , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Bacteria/metabolism , Inosine
9.
Front Mol Biosci ; 10: 1192621, 2023.
Article in English | MEDLINE | ID: mdl-37200868

ABSTRACT

The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a phosphatase containing a PDZ (PSD-95/Dlg/ZO-1) domain that has been found to play both tumor-suppressive and tumor-promoting roles in various cancers, despite limited knowledge of its cellular partners and signaling functions. Notably, the high-risk genital human papillomavirus (HPV) types 16 and 18 and the hepatitis B virus (HBV) target the PDZ domain of PTPN3 through PDZ-binding motifs (PBMs) in their E6 and HBc proteins respectively. This study focuses on the interactions between the PTPN3 PDZ domain (PTPN3-PDZ) and PBMs of viral and cellular protein partners. We solved the X-ray structures of complexes between PTPN3-PDZ and PBMs of E6 of HPV18 and the tumor necrosis factor-alpha converting enzyme (TACE). We provide new insights into key structural determinants of PBM recognition by PTPN3 by screening the selectivity of PTPN3-PDZ recognition of PBMs, and by comparing the PDZome binding profiles of PTPN3-recognized PBMs and the interactome of PTPN3-PDZ. The PDZ domain of PTPN3 was known to auto-inhibit the protein's phosphatase activity. We discovered that the linker connecting the PDZ and phosphatase domains is involved in this inhibition, and that the binding of PBMs does not impact this catalytic regulation. Overall, the study sheds light on the interactions and structural determinants of PTPN3 with its cellular and viral partners, as well as on the inhibitory role of its PDZ domain on its phosphatase activity.

10.
FEBS J ; 290(11): 2968-2992, 2023 06.
Article in English | MEDLINE | ID: mdl-36629470

ABSTRACT

Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.


Subject(s)
Carrier Proteins , Streptococcus agalactiae , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Guanosine Pentaphosphate , Guanosine Tetraphosphate , Bacterial Proteins/metabolism , Cyclic AMP , Dinucleoside Phosphates/metabolism , Potassium/metabolism
11.
Structure ; 31(2): 152-165.e7, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36586404

ABSTRACT

Type II secretion systems (T2SSs) allow diderm bacteria to secrete hydrolytic enzymes, adhesins, or toxins important for growth and virulence. To promote secretion of folded proteins, T2SSs assemble periplasmic filaments called pseudopili or endopili at an inner membrane subcomplex, the assembly platform (AP). Here, we combined biophysical approaches, nuclear magnetic resonance (NMR) and X-ray crystallography, to study the Klebsiella AP components PulL and PulM. We determined the structure and associations of their periplasmic domains and describe the structure of the heterodimer formed by their ferredoxin-like domains. We show how structural complementarity and plasticity favor their association during the secretion process. Cysteine scanning and crosslinking data provided additional constraints to build a structural model of the PulL-PulM assembly in the cellular context. Our structural and functional insights, together with the relative cellular abundance of its components, support the role of AP as a dynamic hub that orchestrates pilus polymerization.


Subject(s)
Type II Secretion Systems , Type II Secretion Systems/metabolism , Bacteria/metabolism , Fimbriae, Bacterial/metabolism , Bacterial Proteins/chemistry
12.
BMC Biol ; 20(1): 176, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945584

ABSTRACT

BACKGROUND: Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS: We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION: Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.


Subject(s)
Calcium , Calmodulin , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Imidazoles , Protein Binding , Scattering, Small Angle , X-Ray Diffraction
13.
Front Microbiol ; 13: 829094, 2022.
Article in English | MEDLINE | ID: mdl-35283834

ABSTRACT

The C-terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein E contains a PBM (PDZ-binding motif) targeting PDZ (PSD-95/Dlg/ZO-1) domains, which is identical to the PBM of SARS-CoV. The latter is involved in the pathogenicity of the virus. Recently, we identified 10 human PDZ-containing proteins showing significant interactions with SARS-CoV-2 protein E PBM. We selected several of them involved in cellular junctions and cell polarity (TJP1, PARD3, MLLT4, and LNX2) and MPP5/PALS1 previously shown to interact with SARS-CoV E PBM. Targeting cellular junctions and polarity components is a common strategy by viruses to hijack cell machinery to their advantage. In this study, we showed that these host PDZ domains TJP1, PARD3, MLLT4, LNX2, and MPP5/PALS1 interact in a PBM-dependent manner in vitro and colocalize with the full-length E protein in cellulo, sequestrating the PDZ domains to the Golgi compartment. We solved three crystal structures of complexes between human LNX2, MLLT4, and MPP5 PDZs and SARS-CoV-2 E PBM highlighting its binding preferences for several cellular targets. Finally, we showed different affinities for the PDZ domains with the original SARS-CoV-2 C-terminal sequence containing the PBM and the one of the beta variant that contains a mutation close to the PBM. The acquired mutations in the E protein localized near the PBM might have important effects both on the structure and the ion-channel activity of the E protein and on the host machinery targeted by the variants during the infection.

14.
FEBS J ; 289(16): 4869-4887, 2022 08.
Article in English | MEDLINE | ID: mdl-35152545

ABSTRACT

Tuberculosis claims significantly more than one million lives each year. A feasible way to face the issue of drug resistance is the development of new antibiotics. Bacterial uridine 5'-monophosphate (UMP) kinase is a promising target for novel antibiotic discovery as it is essential for bacterial survival and has no counterpart in human cells. The UMP kinase from M. tuberculosis is also a model of particular interest for allosteric regulation with two effectors, GTP (positive) and UTP (negative). In this study, using X-ray crystallography and cryo-electron microscopy, we report for the first time a detailed description of the negative effector UTP-binding site of a typical Gram-positive behaving UMP kinase. Comparison between this snapshot of low affinity for Mg-ATP with our previous 3D-structure of the GTP-bound complex of high affinity for Mg-ATP led to a better understanding of the cooperative mechanism and the allosteric regulation of UMP kinase. Thermal shift assay and circular dichroism experiments corroborate our model of an inhibition by UTP linked to higher flexibility of the Mg-ATP-binding domain. These new structural insights provide valuable knowledge for future drug discovery strategies targeting bacterial UMP kinases.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacteria , Adenosine Triphosphate , Allosteric Regulation , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Cryoelectron Microscopy , Guanosine Triphosphate/pharmacology , Humans , Nucleoside-Phosphate Kinase , Uridine Monophosphate/pharmacology , Uridine Triphosphate/pharmacology
15.
Protein Sci ; 31(2): 538-544, 2022 02.
Article in English | MEDLINE | ID: mdl-34806245

ABSTRACT

PTPN2 is an important protein tyrosine phosphatase (PTP) that plays a key role in cell signaling. Deletions or inactivating mutations of PTPN2 have been described in different pathologies and underline its critical role in hematopoiesis, autoimmunity, and inflammation. Surprisingly, despite the major pathophysiological implications of PTPN2, the structural analysis of this PTP and notably of its pathogenic mutants remains poorly documented. Contrary to other human PTP enzymes, to date, only one structure of PTPN2 (wild-type form) has been reported. Here, we report the first crystal structure of a pathogenic mutant of PTPN2 (Cys216Gly) that causes an autoimmune enteropathy. We show in particular that this mutant adopts a classical PTP fold. More importantly, albeit inactive, the mutant retains its ability to bind substrates and to adopt the characteristic catalytically competent closed form of PTP enzymes. This novel PTPN2 structure may serve as a new tool to better understand PTP structures and the structural impacts of pathogenic mutations. Moreover, the C216G PTPN2 structure could also be helpful to design specific ligands/inhibitors.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , Humans , Polyendocrinopathies, Autoimmune/genetics , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
16.
Adv Sci (Weinh) ; 8(9): 2003630, 2021 05.
Article in English | MEDLINE | ID: mdl-33977052

ABSTRACT

The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Calmodulin/metabolism , Eukaryotic Cells/metabolism , Protein Domains/physiology , Binding Sites/physiology , Protein Binding/physiology , Protein Transport/physiology
17.
Sci Rep ; 11(1): 944, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441627

ABSTRACT

Interactions between the hepatitis B virus core protein (HBc) and host cell proteins are poorly understood, although they may be essential for the propagation of the virus and its pathogenicity. HBc has a C-terminal PDZ (PSD-95, Dlg1, ZO-1)-binding motif (PBM) that is responsible for interactions with host PDZ domain-containing proteins. In this work, we focused on the human protein tyrosine phosphatase non-receptor type 3 (PTPN3) and its interaction with HBc. We solved the crystal structure of the PDZ domain of PTPN3 in complex with the PBM of HBc, revealing a network of interactions specific to class I PDZ domains despite the presence of a C-terminal cysteine in this atypical PBM. We further showed that PTPN3 binds the HBc protein within capsids or as a homodimer. We demonstrate that overexpression of PTPN3 significantly affects HBV infection in HepG2 NTCP cells. Finally, we performed proteomics studies on both sides by pull-down assays and screening of a human PDZ domain library. We identified a pool of human PBM-containing proteins that might interact with PTPN3 in cells and that could be in competition with the HBc PBM during infection, and we also identified potential cellular partners of HBc through PDZ-PBM interactions. This study opens up many avenues of future investigations into the pathophysiology of HBV.


Subject(s)
Hepatitis B Core Antigens/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 3/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 3/ultrastructure , Capsid/metabolism , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B Core Antigens/ultrastructure , Hepatitis B virus/metabolism , Hepatitis B virus/pathogenicity , Hepatitis B virus/physiology , Humans , PDZ Domains/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 3/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 3/physiology , Protein Tyrosine Phosphatases/metabolism , Tyrosine/metabolism , Viral Core Proteins/metabolism
18.
J Mol Biol ; 432(22): 5920-5937, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32971111

ABSTRACT

Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.


Subject(s)
Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , PDZ Domains/physiology , Protein Binding , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Guanylate Kinases/metabolism , Humans , Myosins/metabolism , Proteins , Stereocilia/metabolism
19.
Proc Natl Acad Sci U S A ; 117(29): 16790-16798, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32631977

ABSTRACT

Nucleic acid aptamers selected through systematic evolution of ligands by exponential enrichment (SELEX) fold into exquisite globular structures in complex with protein targets with diverse translational applications. Varying the chemistry of nucleotides allows evolution of nonnatural nucleic acids, but the extent to which exotic chemistries can be integrated into a SELEX selection to evolve nonnatural macromolecular binding interfaces is unclear. Here, we report the identification of a cubane-modified aptamer (cubamer) against the malaria biomarker Plasmodium vivax lactate dehydrogenase (PvLDH). The crystal structure of the complex reveals an unprecedented binding mechanism involving a multicubane cluster within a hydrophobic pocket. The binding interaction is further stabilized through hydrogen bonding via cubyl hydrogens, previously unobserved in macromolecular binding interfaces. This binding mechanism allows discriminatory recognition of P. vivax over Plasmodium falciparum lactate dehydrogenase, thereby distinguishing these highly conserved malaria biomarkers for diagnostic applications. Together, our data demonstrate that SELEX can be used to evolve exotic nucleic acids bearing chemical functional groups which enable remarkable binding mechanisms which have never been observed in biology. Extending to other exotic chemistries will open a myriad of possibilities for functional nucleic acids.


Subject(s)
Aptamers, Nucleotide/chemistry , L-Lactate Dehydrogenase/chemistry , Malaria/diagnosis , Protozoan Proteins/chemistry , Biomarkers/blood , Biomarkers/chemistry , Humans , Hydrogen Bonding , L-Lactate Dehydrogenase/blood , Malaria/blood , Molecular Diagnostic Techniques/methods , Molecular Dynamics Simulation , Plasmodium vivax/enzymology , Protein Binding
20.
Elife ; 92020 03 11.
Article in English | MEDLINE | ID: mdl-32157997

ABSTRACT

Spirochete bacteria, including important pathogens, exhibit a distinctive means of swimming via undulations of the entire cell. Motility is powered by the rotation of supercoiled 'endoflagella' that wrap around the cell body, confined within the periplasmic space. To investigate the structural basis of flagellar supercoiling, which is critical for motility, we determined the structure of native flagellar filaments from the spirochete Leptospira by integrating high-resolution cryo-electron tomography and X-ray crystallography. We show that these filaments are coated by a highly asymmetric, multi-component sheath layer, contrasting with flagellin-only homopolymers previously observed in exoflagellated bacteria. Distinct sheath proteins localize to the filament inner and outer curvatures to define the supercoiling geometry, explaining a key functional attribute of this spirochete flagellum.


Subject(s)
Bacterial Proteins/physiology , Flagella/physiology , Leptospira/physiology , Movement , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...