Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
ACS Mater Au ; 3(4): 386-393, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-38090125

ABSTRACT

The interactions between heterogeneous cell populations play important roles in dictating various cell behaviors. Cell-cell contact mediates communication through the exchange of signaling molecules, electrical coupling, and direct membrane-linked ligand-receptor interactions. In vitro culturing of multiple cell types with control over their specific arrangement is difficult, especially in three-dimensional (3D) systems. While techniques that allow one to control the arrangement of cells and direct contact between different cell types have been developed that expand upon simple co-culture methods, specific control over heterojunctions that form between cells is not easily accomplished with current methods, such as 3D cell-printing. In this article, DNA-mediated cell interactions are combined with cell-compatible photolithographic approaches to control cell assembly. Specifically, cells are coated with oligonucleotides containing DNA nucleobases that are protected with photocleavable moieties; this coating facilitated light-controlled cell assembly when these cells were mixed with cells coated with complementary oligonucleotides. By combining this technology with digital micromirror devices mounted on a microscope, selective activation of specific cell populations for interactions with other cells was achieved. Importantly, this technique is rapid and uses non-UV light sources. Taken together, this technique opens new pathways for on-demand programming of complex cell structures.

2.
ACS Appl Mater Interfaces ; 15(30): 36888-36898, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37463843

ABSTRACT

Determining the mechanistic causes of lung diseases, developing new treatments thereof, and assessing toxicity whether from chemical exposures or engineered nanomaterials would benefit significantly from a preclinical human lung alveolar interstitium model of physiological relevance. The existing preclinical models have limitations because they fail to replicate the key anatomical and physiological characteristics of human alveoli. Thus, a human lung alveolar interstitium chip was developed to imitate key alveolar microenvironmental factors including an electrospun nanofibrous membrane as the analogue of the basement membrane for co-culture of epithelial cells with fibroblasts embedded in 3D collagenous gels, physiologically relevant interstitial matrix stiffness, interstitial fluid flow, and 3D breathing-like mechanical stretch. The biomimetic chip substantially improved the epithelial barrier function compared to transwell models. Moreover, the chip having a gel made of a collagen I-fibrin blend as the interstitial matrix sustained the interstitium integrity and further enhanced the epithelial barrier, resulting in a longevity that extended beyond eight weeks. The assessment of multiwalled carbon nanotube toxicity on the chip was in line with the animal study.


Subject(s)
Biomimetics , Lung Diseases , Animals , Humans , Longevity , Lung , Pulmonary Alveoli
3.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909503

ABSTRACT

The mechanical properties and forces in the extracellular environment surrounding alveolar epithelial cells have the potential to modulate their behavior. Particularly, breathing applies 3-dimensional cyclic stretches to the cells, while the stiffness of the interstitium changes in disease states, such as fibrosis and cancer. A platform was developed that effectively imitates the active forces in the alveolus, while allowing one to control the interstitium matrix stiffnesses to mimic fibrotic lung tumor microenvironments. Alveolar epithelial cancer cells were cultured on these platforms and changes in the glycocalyx expression were evaluated. A complex combination of stiffness and dynamic forces altered heparan sulfate and chondroitin sulfate proteoglycan expressions. Consequently, we designed liposomal nanoparticles (LNPs) modified with peptides that can target heparan sulphate and chondroitin sulfates of cell surface glycocalyx. Cellular uptake of these modified nanoparticles increased in stiffer conditions depending on the stretch state. Namely, chondroitin sulfate A targeting improved uptake efficiency in cells experiencing dynamic stretches, while cells seeded on static stiff interstitium preferentially took up heparan sulfate targeting LNPs. These results demonstrate the critical role that mechanical stiffness and stretching play in the alveolus and the importance of including these properties in nanotherapeutic design for cancer treatment.

4.
ACS Nano ; 17(3): 2124-2133, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36668987

ABSTRACT

Regulating cell behavior using nanotopography has been widely implemented. To facilitate cell adhesion, physical nanotopography is usually coated with adhesive proteins such as fibronectin (FN). However, the confounding effects of physical and biochemical cues of nanotopography hinder the understanding of nanotopography in regulating cell behavior, which ultimately limits the biomedical applications of nanotopography. To delineate the roles of the physical and biochemical cues in cell regulation, we fabricate substrates that have either the same physical nanotopography but different biochemical (FN) nanopatterns or identical FN nanopatterns but different physical nanotopographies. We then examine the influences of physical and biochemical cues of nanotopography on spreading, nuclear deformation, mechanotransduction, and function of human mesenchymal stem cells (hMSCs). Our results reveal that physical topographies, especially nanogratings, dominantly control cell spreading, YAP localization, proliferation, and differentiation of hMSCs. However, biochemical FN nanopatterns affect hMSC elongation, YAP intracellular localization, and lamin a/c (LAMAC) expression. Furthermore, we find that physical nanogratings induce nanoscale curvature of nuclei at the basal side, which attenuates the osteogenic differentiation of hMSCs. Collectively, our study highlights the dominant effect of physical nanotopography in regulating stem cell functions, while suggesting that fine-tuning of cell behavior can be achieved through altering the presentation of biochemical cues on substrate surfaces.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Mechanotransduction, Cellular , Cell Differentiation , Cell Adhesion
5.
ACS Cent Sci ; 8(9): 1282-1289, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36188351

ABSTRACT

The plasma membrane and the actomyosin cytoskeleton play key roles in controlling how cells sense and interact with their surrounding environment. Myosin, a force-generating actin network-associated protein, is a major regulator of plasma membrane tension, which helps control endocytosis. Despite the important link between plasma membranes and actomyosin (the actin-myosin complex), little is known about how the actomyosin arrangement regulates endocytosis. Here, nanoscopic ligand arrangements defined by polymer pen lithography (PPL) are used to control actomyosin contractility and examine cell uptake. Confocal microscopy, atomic force microscopy, and flow cytometry suggest that the cytoskeletal tension imposed by the nanoscopic ligand arrangement can actively regulate cellular uptake through clathrin- and caveolin-mediated pathways. Specifically, ligand arrangements that increase cytoskeletal tension tend to reduce the cellular uptakes of cholera toxin (CTX) and spherical nucleic acids (SNAs) by regulating endocytic budding and limiting the formation of clathrin- and caveolae-coated pits. Collectively, this work demonstrates how the cell endocytic fate is regulated by actomyosin mechanical forces, which can be tuned by subcellular cues defined by PPL.

6.
ACS Nano ; 16(7): 10931-10942, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35849553

ABSTRACT

Maximizing the tissue-targeting efficiency of nanomaterials while also protecting them from rapid clearance from the bloodstream and limiting their immunogenicity remains a central problem in the field of systemic-administered nanomedicine. Herein, we introduce a generalizable strategy to simultaneously increase tumor accumulation, prolong blood circulation, and limit nonspecific immune activation of nanomaterials via peptide-based, tumor-responsive, "sheddable" coatings. Spherical nucleic acids (SNAs) were designed and synthesized to contain an exterior coating composed of zwitterionic polypeptides with recognition sequences for tumor-associated proteases. In the presence of matrix metalloproteinases (MMPs), the polypetide coating is rapidly cleaved, leading to increased cellular uptake of these SNAs, relative to SNAs containing nonsheddable shells. Moreover, the zwitterionic nature of the polypeptide shell shields the SNAs from immune system recognition, which extends their blood circulation time and improves tumor accumulation and in vivo cellular uptake relative to control SNAs with no protective coating. Taken together, these results indicate that this strategy is a viable method for increasing nanoparticle tumor accumulation and can have utility for the systemic delivery of oligonucleotides and nanomaterials to target cells in vivo with low immunogenicity.


Subject(s)
Nanoparticles , Neoplasms , Nucleic Acids , Humans , Nanomedicine/methods , Oligonucleotides , Peptides
7.
J Am Chem Soc ; 142(16): 7350-7355, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32281796

ABSTRACT

A novel method for synthesizing arrays of uniform sub-2 nm particles on substrates is described. Such particles are made by (i) using dip-pen nanolithography to prepare nanoreactors consisting of metal-coordinated polymers; (ii) designing polymers with only one metal atom attached to each polymer chain; (iii) systematically controlling nanoreactor volume down to the yoctoliter scale; and (iv) transforming each nanoreactor into a metal nanoparticle through thermal annealing. Polymer design in this study is crucial, since it allows one to tightly control nanoparticle size by tuning the volume of the polymer reactors, which correlates with the number of polymer chains and, therefore, metal atoms. Mixtures of different metal-functionalized polymers were used to synthesize ultrasmall alloy particles. The technique and results described herein point toward a way of using these novel polymers to systematically explore the properties and uses of this important class of nanomaterials in many fields.

8.
ACS Appl Bio Mater ; 3(12): 8603-8610, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33709070

ABSTRACT

Abnormal scarring is a consequence of dysregulation in the wound healing process, with limited options for effective and noninvasive therapies. Given the ability of spherical nucleic acids (SNAs) to penetrate skin and regulate gene expression within, we investigated whether gold-core SNAs (AuSNAs) and liposome-core SNAs (LSNAs) bearing antisense oligonucleotides targeting transforming growth factor beta 1 (TGF-ß1) can function as a topical therapy for scarring. Importantly, both SNA constructs appreciably downregulated TGF-ß1 protein expression in primary hypertrophic and keloid scar fibroblasts in vitro. In vivo, topically applied AuSNAs and LSNAs downregulated TGF-ß1 protein expression levels and improved scar histology as determined by the scar elevation index. These data underscore the potential of SNAs as a localized, self-manageable treatment for skin-related diseases and disorders that are driven by increased gene expression.

9.
ACS Nano ; 13(10): 11144-11152, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31532622

ABSTRACT

Although microscale patterning techniques have been used to control cell morphology and shape, they only provide indirect control over the formation of the subcellular cytoskeletal elements that determine contractility. This paper addresses the hypotheses that nanoscale anisotropic features of a patterned matrix can direct the alignment of internal cytoskeletal actin fibers within a confined shape with an unbiased aspect ratio, and that this enhanced control over cytoskeletal architecture directs programmed cell behaviors. Here, large-area polymer pen lithography is used to pattern substrates with nanoscale extracellular matrix protein features and to identify cues that can be used to direct cytoskeletal organization in human mesenchymal stem cells. This nanopatterning approach is used to identify how anisotropic focal adhesions around the periphery of symmetric patterns yield an organized and contractile actin cytoskeleton. This work reports the important finding that anisotropic cues that increase cell contractility within a circular shape redirect cell differentiation from an adipogenic to an osteogenic fate. Together, these experiments introduce a programmable approach for using subcellular spatial cues to control cell behavior within defined geometries.


Subject(s)
Cell Differentiation/drug effects , Cell Lineage/genetics , Osteogenesis/drug effects , Polymers/pharmacology , Stem Cells/drug effects , Actins/chemistry , Actins/genetics , Anisotropy , Cell Adhesion/drug effects , Cell Lineage/drug effects , Cell Shape/drug effects , Cytoskeleton/drug effects , Cytoskeleton/genetics , Focal Adhesions/drug effects , Focal Adhesions/genetics , Humans , Nanostructures/administration & dosage , Nanostructures/chemistry , Polymers/chemistry , Stem Cells/cytology
10.
Science ; 363(6430): 959-964, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30819959

ABSTRACT

Nanomaterials that form as heterostructures have applications in catalysis, plasmonics, and electronics. Multielement nanoparticles can now be synthesized through a variety of routes, but how thermodynamic phases form in such structures and how specific interfaces between them can be designed and synthesized are still poorly understood. We explored how palladium-tin alloys form mixed-composition phases with metals with known but complex miscibilities. Nanoparticles with up to seven elements were synthesized, and many form triphase heterostructures consisting of either three-interface or two-interface architectures. Density functional theory calculations and experimental work were used to determine the balance between the surface and interfacial energies of the observed phases. From these observations, design rules have been established for making polyelemental systems with specific heterostructures, including tetraphase nanoparticles with as many as six junctions.

11.
ACS Cent Sci ; 5(12): 1983-1990, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31893228

ABSTRACT

Spherical nucleic acids (SNAs) are nanomaterials typically consisting of a nanoparticle core and a functional, dense, and highly oriented oligonucleotide shell with unusual biological properties that make them appealing for many applications, including sequence-specific gene silencing, mRNA quantification, and immunostimulation. When placed in biological fluids, SNAs readily interact with serum proteins, leading to the formation of ill-defined protein coronae on the surface, which can influence the targeting capabilities of the conjugate. In this work, SNAs were designed and synthesized with functional proteins, such as antibodies and serum albumin, deliberately adsorbed onto their surfaces. These particles exhibit increased resistance to protease degradation compared with native SNAs but still remain functional, as they can engage in hybridization with complementary oligonucleotides. SNAs with adsorbed targeting antibodies exhibit improved cellular selectivity within mixed cell populations. Similarly, SNAs coated with the dysopsonizing protein serum albumin show reduced macrophage uptake, providing a strategy for tailoring selective SNA delivery. Importantly, the protein coronae remain stable on the SNAs in human serum, exhibiting a less than 45% loss of protein through exchange after 12 h at 37 °C. Taken together, these results show that protein-SNA complexes and the method used to prepare them provide a new avenue for enhancing SNA stability, targeting, and biodistribution.

12.
Proc Natl Acad Sci U S A ; 116(1): 40-45, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30559201

ABSTRACT

The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure-function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink. With this technique, gradients of Au-Cu bimetallic nanoparticles have been synthesized and then screened for activity by in situ Raman spectroscopy with respect to single-walled carbon nanotube (SWNT) growth. Au3Cu, a composition not previously known to catalyze SWNT growth, has been identified as the most active composition.


Subject(s)
Catalysis , Nanostructures/chemistry , Small Molecule Libraries , Copper/chemistry , Gold Alloys/chemistry , High-Throughput Screening Assays , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Spectrum Analysis, Raman
13.
J Am Chem Soc ; 140(23): 7213-7221, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29856627

ABSTRACT

The interactions between nanoparticles and solvents play a critical role in the formation of complex, metastable nanostructures. However, direct observation of such interactions with high spatial and temporal resolution is challenging with conventional liquid-cell transmission electron microscopy (TEM) experiments. Here, a windowless system consisting of polymer nanoreactors deposited via scanning probe block copolymer lithography (SPBCL) on an amorphous carbon film is used to investigate the coarsening of ultrafine (1-3 nm) Au-Pt bimetallic nanoparticles as a function of solvent evaporation. In such reactors, homogeneous Au-Pt nanoparticles are synthesized from metal-ion precursors in situ under electron irradiation. The nonuniform evaporation of the thin polymer film not only concentrates the nanoparticles but also accelerates the coalescence kinetics at the receding polymer edges. Qualitative analysis of the particle forces influencing coalescence suggests that capillary dragging by the polymer edges plays a significant role in accelerating this process. Taken together, this work (1) provides fundamental insight into the role of solvents in the chemistry and coarsening behavior of nanoparticles during the synthesis of polyelemental nanostructures, (2) provides insight into how particles form via the SPBCL process, and (3) shows how SPBCL-generated domes, instead of liquid cells, can be used to study nanoparticle formation. More generally, it shows why conventional models of particle coarsening, which do not take into account solvent evaporation, cannot be used to describe what is occurring in thin film, liquid-based syntheses of nanostructures.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Kinetics , Solvents/chemistry
15.
Small ; 14(5)2018 02.
Article in English | MEDLINE | ID: mdl-29226611

ABSTRACT

Liposomal spherical nucleic acids (LSNAs) are an attractive therapeutic platform for gene regulation and immunomodulation due to their biocompatibility, chemically tunable structures, and ability to enter cells rapidly without the need for ancillary transfection agents. Such structures consist of small (<100 nm) liposomal cores functionalized with a dense, highly oriented nucleic acid shell, both of which are key components in facilitating their biological activity. Here, the properties of LSNAs synthesized using conventional methods, anchoring cholesterol terminated oligonucleotides into a liposomal core, are compared to LSNAs made by directly modifying the surface of a liposomal core containing azide-functionalized lipids with dibenzocyclooctyl-terminated oligonucleotides. The surface densities of the oligonucleotides are measured for both types of LSNAs, with the lipid-modified structures having approximately twice the oligonucleotide surface coverage. The stabilities and cellular uptake properties of these structures are also evaluated. The higher density, lipid-functionalized structures are markedly more stable than conventional cholesterol-based structures in the presence of other unmodified liposomes and serum proteins as evidenced by fluorescence assays. Significantly, this new form of LSNA exhibits more rapid cellular uptake and increased sequence-specific toll-like receptor activation in immune reporter cell lines, making it a promising candidate for immunotherapy.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , DNA/chemistry , Lipids/chemistry , Liposomes , Nucleic Acids/chemistry , Nucleic Acids/pharmacology , Cell Line , Transfection
16.
J Am Chem Soc ; 139(29): 9876-9884, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28700228

ABSTRACT

Recent developments in scanning probe block copolymer lithography (SPBCL) enable the confinement of multiple metal precursors in a polymer nanoreactor and their subsequent transformation into a single multimetallic heterostructured nanoparticle through thermal annealing. However, the process by which multimetallic nanoparticles form in SPBCL-patterned nanoreactors remains unclear. Here, we utilize the combination of PEO-b-P2VP and Au, Ag, and Cu salts as a model three-component system to investigate this process. The data suggest that the formation of single-component Au, Ag, or Cu nanoparticles within polymer nanoreactors consists of two stages: (I) nucleation, growth, and coarsening of the particles to yield a single particle in each reactor; (II) continued particle growth by depletion of the remaining precursor in the reactor until the particle reaches a stable size. Also, different aggregation rates are observed for single-component particle formation (Au > Ag > Cu). This behavior is also observed for two-component systems, where nucleation sites have greater Au content than the other metals. This information can be used to trap nanoparticles with kinetic structures. High-temperature treatment ultimately facilitates the structural evolution of the kinetic particle into a particle with a fixed structure. Therefore, with multicomponent systems, a third stage that involves elemental redistribution within the particle must be part of the description of the synthetic process. This work not only provides a glimpse at the mechanism underlying multicomponent nanoparticle formation in SPBCL-generated nanoreactors but also illustrates, for the first time, the utility of SPBCL as a platform for controlling the architectural evolution of multimetallic nanoparticles in general.


Subject(s)
Copper/chemistry , Gold/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Silver/chemistry , Microscopy, Electron, Scanning Transmission , Molecular Structure , Particle Size , Polyethylene Glycols/chemical synthesis , Polyvinyls/chemical synthesis , Salts/chemistry , Surface Properties
17.
ACS Nano ; 11(8): 8231-8241, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28617585

ABSTRACT

A high-throughput, solution-based, scanning-probe photochemical nanopatterning approach, which does not require the use of probes with subwavelength apertures, is reported. Specifically, pyramid arrays made from high-refractive-index polymeric materials were constructed and studied as patterning tools in a conventional liquid-phase beam pen lithography experiment. Two versions of the arrays were explored with either metal-coated or metal-free tips. Importantly, light can be channeled through both types of tips and the appropriate solution phase (e.g., H2O or CH3OH) and focused on subwavelength regions of a substrate to effect a photoreaction in solution that results in localized patterning of a self-assembled monolayer (SAM)-coated Au thin film substrate. Arrays with as many as 4500 pyramid-shaped probes were used to simultaneously initiate thousands of localized free-radical photoreactions (decomposition of a lithium acylphosphinate photoinitiator in an aqueous solution) that result in oxidative removal of the SAM. The technique is attractive since it allows one to rapidly generate features less than 200 nm in diameter, and the metal-free tips afford more than 10-fold higher intensity than the tips with nanoapertures over a micrometer propagation length. In principle, this mask-free method can be utilized as a versatile tool for performing a wide variety of photochemistries across multiple scales that may be important in high-throughput combinatorial screening applications related to chemistry, biology, and materials science.

18.
Angew Chem Int Ed Engl ; 56(26): 7625-7629, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28508525

ABSTRACT

Multicomponent nanoparticles can be synthesized with either homogeneous or phase-segregated architectures depending on the synthesis conditions and elements incorporated. To understand the parameters that determine their structural fate, multicomponent metal-oxide nanoparticles consisting of combinations of Co, Ni, and Cu were synthesized by using scanning probe block copolymer lithography and characterized using correlated electron microscopy. These studies revealed that the miscibility, ratio of the metallic components, and the synthesis temperature determine the crystal structure and architecture of the nanoparticles. A Co-Ni-O system forms a rock salt structure largely owing to the miscibility of CoO and NiO, while Cu-Ni-O, which has large miscibility gaps, forms either homogeneous oxides, heterojunctions, or alloys depending on the annealing temperature and composition. Moreover, a higher-ordered structure, Co-Ni-Cu-O, was found to follow the behavior of lower ordered systems.


Subject(s)
Metal Nanoparticles/chemistry , Oxides/chemistry , Polyethylene Glycols/chemistry , Cobalt/chemistry , Copper/chemistry , Glutathione/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Structure , Nickel/chemistry , Oxidation-Reduction , Temperature
19.
J Am Chem Soc ; 139(12): 4278-4281, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28207251

ABSTRACT

A one-pot synthesis of micellar spherical nucleic acid (SNA) nanostructures using Pluronic F127 as a thermoresponsive template is reported. These novel constructs are synthesized in a chemically straightforward process that involves intercalation of the lipid tails of DNA amphiphiles (CpG motifs for TLR-9 stimulation) into the hydrophobic regions of Pluronic F127 micelles, followed by chemical cross-linking and subsequent removal of non-cross-linked structures. The dense nucleic acid shell of the resulting cross-linked micellar SNA enhances their stability in physiological media and facilitates their rapid cellular internalization, making them effective TLR-9 immunomodulatory agents. These constructs underscore the potential of SNAs in regulating immune response and address the relative lack of stability of noncovalent constructs.


Subject(s)
Cross-Linking Reagents/chemistry , Micelles , Nucleic Acids/chemistry , Temperature , Cell Survival , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions
20.
Nanoscale ; 7(41): 17397-403, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26439640

ABSTRACT

DNA can be manipulated to design nano-machines through specific sequence recognition. We report a switchable DNA carrier for repeatable capture and release of a single stranded DNA. The activity of the carrier was regulated by the interactions among a double-stranded actuator, single stranded target, fuel, and anti-fuel DNA strands. Inosine was used to maintain a stable triple-stranded complex when the actuator's conformation was switched between open (capture) and closed (release) configurations. Time lapse fluorescence measurements show repeatable capture and release of target strands. TEM images also show visible capture of target DNA strands when gold nanoparticles were attached to the DNA carrier and the target DNA strand. The carrier activity was controlled by length of toeholds, number of mismatches, and inosine substitutions. Significantly, unlike in previously published work that reported the devices functioned only when there is a perfect match between the interacting DNA strands, the present device works only when there are mismatches in the fuel strand and the best performance is achieved for 1-3 mismatches. The device was used to successfully capture and release gold nanoparticles when linked to the target single-stranded DNA. In general, this type of devices can be used for transport and delivery of theranostic molecules.


Subject(s)
DNA/chemistry , Drug Carriers/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...