Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Psychopharmacol ; 35(6): 713-729, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33546570

ABSTRACT

BACKGROUND: Central histamine H3 receptors are a family of presynaptic auto and heteroreceptors. Blockade of the presynaptic H3 receptors activates the downstream pathway(s) involved in the processes of learning and memory, making it a potential therapeutic option for ameliorating cognitive dysfunction. Samelisant (SUVN-G3031) is a potent and selective inverse agonist at the H3 receptors. AIM: The aim of this research is to study the effects of Samelisant in diverse animal models of cognitive functions. METHODS: The effects of Samelisant on cognitive functions were studied using social recognition, object recognition and Morris water maze tasks. Neurochemical and electrophysiological effects of Samelisant were monitored using microdialysis and electroencephalography techniques. RESULTS: Samelisant showed procognitive effects in diverse animal models of cognition at doses ranging from 0.3 to 3 mg/kg, per os (p.o.) (social recognition and object recognition task). Samelisant significantly increased the brain acetylcholine levels in the cortex at doses of 10 and 20 mg/kg, p.o. In the Morris water maze task, combined administration of suboptimal doses of Samelisant and donepezil resulted in procognitive effects significantly larger than the either treatment. Similarly, Samelisant significantly potentiated the effects of donepezil on pharmacodynamic biomarkers of cognition i.e. acetylcholine levels in brain and neuronal theta oscillations. CONCLUSION: Samelisant may have potential utility in the treatment of cognitive deficits associated with hypocholinergic state.


Subject(s)
Cognition/drug effects , Histamine Agonists/pharmacology , Morpholines/pharmacology , Piperidines/pharmacology , Receptors, Histamine H3/drug effects , Animals , Cognition Disorders/drug therapy , Donepezil/administration & dosage , Donepezil/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Histamine Agonists/administration & dosage , Male , Maze Learning/drug effects , Morpholines/administration & dosage , Nootropic Agents/administration & dosage , Nootropic Agents/pharmacology , Piperidines/administration & dosage , Rats , Rats, Wistar , Receptors, Histamine H3/metabolism
2.
Behav Pharmacol ; 30(1): 16-35, 2019 02.
Article in English | MEDLINE | ID: mdl-29847336

ABSTRACT

Research in Alzheimer's disease is going through a big turnaround. New palliative therapies are being reconsidered for the effective management of disease because of setbacks in the development of disease-modifying therapies. Serotonin 6 (5-HT6) receptor has long been pursued as a potential target for the symptomatic treatment of Alzheimer's disease. SUVN-502 is a novel 5-HT6 receptor antagonist (Ki=2.04 nmol/l) with high receptor affinity and high degree of selectivity. SUVN-502 at doses ranging from 1 to 10 mg/kg, per os (p.o.) demonstrated procognitive effects in various behavioral animal models (object recognition task, water maze, and radial arm maze), and it acts on three phases of cognition, viz., acquisition, consolidation, and retention (object recognition task). SUVN-502 (3 and 10 mg/kg, p.o.) modulated glutamate levels when administered alone (microdialysis). At doses ranging from 1 to 10 mg/kg p.o., SUVN-502 potentiated the effects of donepezil (microdialysis). SUVN-502 [1 mg/kg, intravenous (i.v.)] also potentiated pharmacological effects of memantine (1 mg/kg, i.v.) and/or donepezil (0.3 mg/kg, i.v.) (θ modulation). The beneficial effects of SUVN-502 on learning and memory might be mediated through the modulation of cholinergic and/or glutamatergic neurotransmission in relevant brain regions. In summary, behavioral, neurochemical, and electrophysiological outcomes indicate that SUVN-502 may augment the beneficial effects of donepezil and memantine combination.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Indoles/pharmacology , Piperazines/pharmacology , Serotonin Antagonists/pharmacology , Acetylcholine/pharmacology , Animals , Brain Waves/drug effects , CHO Cells , Cricetulus , Culture Media, Serum-Free/pharmacology , Dizocilpine Maleate/pharmacology , Donepezil/pharmacology , Dose-Response Relationship, Drug , Electroencephalography , Glutamic Acid/pharmacology , Male , Maze Learning/drug effects , Memantine/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Microdialysis , Nootropic Agents/pharmacology , Rats , Rats, Wistar , Receptors, Serotonin/metabolism , Recognition, Psychology/drug effects , Scopolamine/toxicity , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL