Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Prog Neurobiol ; 231: 102536, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37805096

ABSTRACT

Excessive daytime sleepiness (EDS) and sleep fragmentation are often observed in Parkinson's disease (PD) patients and are poorly understood despite their considerable impact on quality of life. We examined the ability of a neurotoxin-based mouse model of PD to reproduce these disorders and tested the potential counteracting effects of dopamine replacement therapy. Experiments were conducted in female mice with a unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, leading to the loss of dopamine neurons projecting to the dorsal and ventral striatum. Sham-operated mice were used as control. Electroencephalographic and electromyographic recording was used to identify and quantify awaken, rapid eye movement (REM) and non-REM (NREM) sleep states. PD mice displayed enhanced NREM sleep and reduced wakefulness during the active period of the 24-hour circadian cycle, indicative of EDS. In addition, they also showed fragmentation of NREM sleep and increased slow-wave activity, a marker of sleep pressure. Electroencephalographic analysis of the PD model also revealed decreased density and increased length of burst-like thalamocortical oscillations (spindles). Treatment of PD mice with the dopamine receptor agonist, pramipexole, but not with L-DOPA, counteracted EDS by reducing the number, but not the length, of NREM sleep episodes during the first half of the active period. The present model recapitulates some prominent PD-related anomalies affecting sleep macro- and micro-structure. Based on the pharmacological profile of pramipexole these results also indicate the involvement of impaired dopamine D2/D3 receptor transmission in EDS.


Subject(s)
Parkinson Disease , Sleep Wake Disorders , Humans , Female , Mice , Animals , Parkinson Disease/drug therapy , Dopamine , Pramipexole/pharmacology , Pramipexole/therapeutic use , Quality of Life , Sleep , Sleep Wake Disorders/drug therapy , Sleep Wake Disorders/etiology , Disease Models, Animal
2.
Front Behav Neurosci ; 14: 603245, 2020.
Article in English | MEDLINE | ID: mdl-33281577

ABSTRACT

The understanding that hyper-excitability and hyper-synchronism in epilepsy are indissociably bound by a cause-consequence relation has only recently been challenged. Thus, therapeutic strategies for seizure suppression have often aimed at inhibiting excitatory circuits and/or activating inhibitory ones. However, new approaches that aim to desynchronize networks or compromise abnormal coupling between adjacent neural circuitry have been proven effective, even at the cost of enhancing local neuronal activation. Although most of these novel perspectives targeting circuitry desynchronization and network coupling have been implemented by non-pharmacological devices, we argue that there may be endogenous neurochemical systems that act primarily in the desynchronization component of network behavior rather than dampening excitability of individual neurons. This review explores the endocannabinoid system as one such possible pharmacological landmark for mimicking a form of "on-demand" desynchronization analogous to those proposed by deep brain stimulation in the treatment of epilepsy. This essay discusses the evidence supporting the role of the endocannabinoid system in modulating the synchronization and/or coupling of distinct local neural circuitry; which presents obvious implications on the physiological setting of proper sensory-motor integration. Accordingly, the process of ictogenesis involves pathological circuit coupling that could be avoided, or at least have its spread throughout the containment of other areas, if such endogenous mechanisms of control could be activated or potentiated by pharmacological intervention. In addition, we will discuss evidence that supports not only a weaker role played on neuronal excitability but the potential of the endocannabinoid system strengthening its modulatory effect, only when circuitry coupling surpasses a level of activation.

3.
Front Neurol ; 11: 586724, 2020.
Article in English | MEDLINE | ID: mdl-33250852

ABSTRACT

Background: Clinical and experimental evidence indicates that olfactory stimulation modulates limbic seizures, either blocking or inducing ictal activity. Objective: We aim to evaluate the behavioral and electroencephalographic (EEGraphic) effects of dihydro-2,4,5-trimethylthiazoline (TMT) olfactory exposure on limbic seizures induced by amygdala rapid kindling (ARK). Materials and Methods: Wistar male rats (280-300 g) underwent stereotaxic surgery for electrode implantation in piriform cortex (PC), hippocampal formation (HIP), and amygdaloid complex (AMYG). Part of the animals was exposed to a saturated chamber with water or TMT, while others had ARK and olfactory exposure prior to the 21st stimulus. Behavioral responses were measured by traditional seizure severity scales (Racine and Pinel and Rovner) and/or by sequential analysis/neuroethology. The electrographic activity of epileptogenic limbic networks was quantified by the occurrence of the first and second EEG afterdischarges, comparing the 1st and 21st stimulus. The spectral analysis [Fast Fourier Transform (FFT)] of the first afterdischarge was performed at the 21st stimulus. Results: TMT olfactory exposure reduced the seizure severity in kindled rats, altering the displayed behavioral sequence. Moreover, TMT decreased the occurrence of first and second afterdischarges, at the 21st stimulus, and altered the spectral features. Conclusions: Both behavioral and EEGraphic evaluations indicated that TMT, a potent molecule with strong biological relevance, in fact, "predator odor," suppressed the epileptiform activity in limbic networks.

4.
Front Pharmacol ; 10: 1414, 2019.
Article in English | MEDLINE | ID: mdl-31827439

ABSTRACT

Sleep disorders are frequently diagnosed in Parkinson's disease and manifested in the prodromal and advanced stages of the disease. These conditions, which in some cases affect more than 50% of Parkinson's disease (PD) patients, include hypersomnia, often manifested as excessive daytime sleepiness, insomnia, characterized by delayed initiation and fragmentation of sleep at night, and disruption of rapid eye movement (REM) sleep, resulting in loss of atonia and dream enactment. Standard dopamine replacement therapies for the treatment of motor symptoms are generally inadequate to combat sleep abnormalities, which seriously affect the quality of life of PD patients. Rodent models still represent a major tool for the study of many aspects of PD. They have been primarily designed to eliminate midbrain dopamine neurons and elicit motor impairment, which are the traditional pathological features of PD. However, rodent models are increasingly employed to investigate non-motor symptoms, which are often caused by degenerative processes affecting multiple monoaminergic and peptidergic structures. This review describes how neurotoxic and genetic manipulations of rats and mice have been utilized to reproduce some of the major sleep disturbances associated with PD and to what extent these abnormalities can be linked to nondopaminergic dysfunction, affecting for instance noradrenaline, serotonin, and orexin transmission. Strengths and limitations are discussed, as well as the consistency of results obtained so far, and the need for models that better reproduce the multisystemic neurodegenerative nature of PD, thereby allowing to replicate the complex etiology of sleep-related disorders.

5.
Magn Reson Imaging ; 50: 45-53, 2018 07.
Article in English | MEDLINE | ID: mdl-29526644

ABSTRACT

PURPOSE: To combine the technique of respiratory gating and compressed sensing (CS) with the objective of accelerating mouse abdominal magnetic resonance imaging (MRI). MATERIALS AND METHODS: To obtain the maximum acceleration, phase-encoding data from a phantom and mouse were obtained on a 4.7 Tesla scanner using the respiratory gating technique. The fully sampled data (FSD) were used to construct reference images and to provide samples to simulate retrospective undersampled data (UD) acquisition using respiratory gating. The UD and 95% of the UD on acceleration 2-5 rates were acquired and used for image reconstruction by CS. Quantitative assessment of reconstructed images was performed by structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and root mean square error (RMSE). RESULTS: The proposed method can accelerate phantom and mouse abdominal MRI acquisition between 2 and 4 rates by reducing the amount of FSD. For phantom UD acquisition, the mean time was reduced in 45.9% and for the acquisition of 95% of UD in 67.8%. For mouse abdominal image UD acquisition, the mean time was reduced in 44.6% and for the acquisition of 95% of UD in 62.5%. The metrics results show that the reconstructed image from UD and 95% of UD by using CS maintains an optimal agreement with their reference images (similarity above 0.88 for phantom and 0.93 for mouse). CONCLUSION: This study presents a novel approach to accelerate mouse abdominal MRI combining respiratory gating technique and CS without the use of expensive hardware and capable of achieving up to 4 acceleration rate without image degradation.


Subject(s)
Abdomen/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Phantoms, Imaging , Retrospective Studies , Signal-To-Noise Ratio
6.
Neuroscience ; 363: 97-106, 2017 Nov 05.
Article in English | MEDLINE | ID: mdl-28890054

ABSTRACT

The brain oscillations may play a critical role in synchronizing neuronal assemblies in order to establish appropriate sensory-motor integration. In fact, studies have demonstrated phase-amplitude coupling of distinct oscillatory rhythms during cognitive processes. Here we investigated whether olfacto-hippocampal coupling occurs when mice are detecting familiar odors located in a spatially restricted area of a new context. The spatial olfactory task (SOT) was designed to expose mice to a new environment in which only one quadrant (target) contains odors provided by its own home-cage bedding. As predicted, mice showed a significant higher exploration preference to the target quadrant; which was impaired by olfactory epithelium lesion (ZnSO4). Furthermore, mice were able to discriminate odors from a different cage and avoided the quadrant with predator odor 2,4,5-trimethylthiazoline (TMT), reinforcing the specificity of the SOT. The local field potential (LFP) analysis of non-lesioned mice revealed higher gamma activity (35-100Hz) in the main olfactory bulb (MOB) and a significant theta phase/gamma amplitude coupling between MOB and dorsal hippocampus, only during exploration of home-cage odors (i.e. in the target quadrant). Our results suggest that exploration of familiar odors in a new context involves dynamic coupling between the olfactory bulb and dorsal hippocampus.


Subject(s)
Hippocampus/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Smell/physiology , Animals , Electrophysiology , Male , Mice , Odorants , Olfactory Pathways/physiology
7.
Neuroscience ; 347: 48-56, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28188855

ABSTRACT

Epilepsy is a neurological disease related to the occurrence of pathological oscillatory activity, but the basic physiological mechanisms of seizure remain to be understood. Our working hypothesis is that specific sensory processing circuits may present abnormally enhanced predisposition for coordinated firing in the dysfunctional brain. Such facilitated entrainment could share a similar mechanistic process as those expediting the propagation of epileptiform activity throughout the brain. To test this hypothesis, we employed the Wistar audiogenic rat (WAR) reflex animal model, which is characterized by having seizures triggered reliably by sound. Sound stimulation was modulated in amplitude to produce an auditory steady-state-evoked response (ASSR; -53.71Hz) that covers bottom-up and top-down processing in a time scale compatible with the dynamics of the epileptic condition. Data from inferior colliculus (IC) c-Fos immunohistochemistry and electrographic recordings were gathered for both the control Wistar group and WARs. Under 85-dB SLP auditory stimulation, compared to controls, the WARs presented higher number of Fos-positive cells (at IC and auditory temporal lobe) and a significant increase in ASSR-normalized energy. Similarly, the 110-dB SLP sound stimulation also statistically increased ASSR-normalized energy during ictal and post-ictal periods. However, at the transition from the physiological to pathological state (pre-ictal period), the WAR ASSR analysis demonstrated a decline in normalized energy and a significant increase in circular variance values compared to that of controls. These results indicate an enhanced coordinated firing state for WARs, except immediately before seizure onset (suggesting pre-ictal neuronal desynchronization with external sensory drive). These results suggest a competing myriad of interferences among different networks that after seizure onset converge to a massive oscillatory circuit.


Subject(s)
Auditory Cortex/physiopathology , Evoked Potentials, Auditory , Inferior Colliculi/physiopathology , Seizures/physiopathology , Acoustic Stimulation , Animals , Auditory Cortex/metabolism , Cortical Synchronization , Disease Models, Animal , Electroencephalography , Inferior Colliculi/metabolism , Neural Pathways/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar
8.
Int J Dev Neurosci ; 58: 1-8, 2017 May.
Article in English | MEDLINE | ID: mdl-28122258

ABSTRACT

Maternal immune activation (MIA) during pregnancy in rodents increases the risk of the offspring to develop schizophrenia-related behaviors, suggesting a relationship between the immune system and the brain development. Here we tested the hypothesis that MIA induced by the viral mimetic polyinosinic-polycytidylic acid (poly I:C) in early or late gestation of mice leads to behavioral and neuroanatomical disorders in the adulthood. On gestational days (GDs) 9 or 17 pregnant dams were treated with poly I:C or saline via intravenous route and the offspring behaviors were measured during adulthood. Considering the progressive structural neuroanatomical alterations in the brain of individuals with schizophrenia, we used magnetic resonance imaging (MRI) to perform brain morphometric analysis of the offspring aged one year. MIA on GD9 or GD17 led to increased basal locomotor activity, enhanced motor responses to ketamine, a psychotomimetic drug, and reduced time spent in the center of the arena, suggesting an increased anxiety-like behavior. In addition, MIA on GD17 reduced glucose preference in the offspring. None of the treatments altered the relative volume of the lateral ventricles. However, a decrease in brain volume, especially for posterior structures, was observed for one-year-old animals treated with poly I:C compared with control groups. Thus, activation of the maternal immune system at different GDs lead to neuroanatomical and behavioral alterations possibly related to the positive and negative symptoms of schizophrenia. These results provide insights on neuroimmunonological and neurodevelopmental aspects of certain psychopathologies, such as schizophrenia.


Subject(s)
Brain/pathology , Mental Disorders/etiology , Prenatal Exposure Delayed Effects/physiopathology , Schizophrenia/complications , Schizophrenia/etiology , Schizophrenia/pathology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Brain/diagnostic imaging , Brain/embryology , Brain/growth & development , Disease Models, Animal , Embryo, Mammalian , Female , Food Preferences , Interferon Inducers/toxicity , Ketamine/toxicity , Locomotion/physiology , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Poly I-C/toxicity , Pregnancy , Schizophrenia/diagnostic imaging , Sucrose/administration & dosage
9.
Epilepsy Behav ; 71(Pt B): 243-249, 2017 06.
Article in English | MEDLINE | ID: mdl-26440280

ABSTRACT

Accumulating evidence from different animal models has contributed to the understanding of the bidirectional comorbidity associations between the epileptic condition and behavioral abnormalities. A strain of animals inbred to enhance seizure predisposition to high-intensity sound stimulation, the Wistar audiogenic rat (WAR), underwent several behavioral tests: forced swim test (FST), open-field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), social preference (SP), marble burying test (MBT), inhibitory avoidance (IAT), and two-way active avoidance (TWAA). The choice of tests aimed to investigate the correlation between underlying circuits believed to be participating in both WAR's innate susceptibility to sound-triggered seizures and the neurobiological substrates associated with test performance. Comparing WAR with its Wistar counterpart (i.e., resistant to audiogenic seizures) showed that WARs present behavioral despair traits (e.g., increased FST immobility) but no evidence of anhedonic behavior (e.g., increased sucrose consumption in SPT) or social impairment (e.g., no difference regarding juvenile exploration in SP). In addition, tests suggested that WARs are unable to properly evaluate degrees of aversiveness (e.g., performance on OFT, EPM, MBT, IAT, and TWAA). The particularities of the WAR model opens new venues to further untangle the neurobiology underlying the co-morbidity of behavioral disorders and epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Subject(s)
Acoustic Stimulation/adverse effects , Avoidance Learning , Disease Models, Animal , Epilepsy, Reflex/psychology , Genetic Predisposition to Disease/psychology , Seizures/psychology , Animals , Avoidance Learning/physiology , Behavior, Animal/physiology , Disease Susceptibility/psychology , Epilepsy, Reflex/genetics , Epilepsy, Reflex/physiopathology , Genetic Predisposition to Disease/genetics , Male , Maze Learning/physiology , Rats , Rats, Wistar , Seizures/genetics , Seizures/physiopathology
10.
Epilepsy Res ; 117: 85-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26432758

ABSTRACT

Given the known effects of undernutrition over protein synthesis, we promoted neonatal undernutrition to evaluate its effect over the neuroplasticity induced by the pilocarpine model of epilepsy and also over spontaneous seizure expression. A well-nourished group (WN), fed ad libitum rat chow diet, and an undernourished group (UN), fed 60% of the amount of diet consumed by a WN group, were submitted to status epilepticus (SE) through pilocarpine injection at 45 days of age. Thereafter, animals were behaviorally monitored for 6h daily to quantify seizures. On the 120th day, electroencephalography (EEG) was recorded and rats were sacrificed to measure proteins and glutamate release from hippocampus. Neo-Timm staining was used to detect mossy fiber sprouting. The results indicate no statistical difference in the latency for the first spontaneous recurrent seizure (SRS), in the number of daily SRS, or in EEG epileptiform activity duration between groups. However, PILO promoted more K(+)-stimulated glutamate release in the hippocampus slices from WN animals when compared to the UN group. It was also found a lower degree of mossy fibers sprouting in UN group. Data from this work, thus, indicate that the decreased neuroplasticity as currently measured does not directly impact on the manifestation of spontaneous seizures.


Subject(s)
Caloric Restriction , Diet, Protein-Restricted , Epilepsy, Temporal Lobe/physiopathology , Hippocampus/physiopathology , Mossy Fibers, Hippocampal/physiopathology , Seizures/physiopathology , Status Epilepticus/physiopathology , Animals , Disease Models, Animal , Electroencephalography , Epilepsy, Temporal Lobe/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Male , Phenotype , Pilocarpine , Rats , Rats, Wistar , Seizures/metabolism , Status Epilepticus/metabolism
11.
Epilepsy Behav ; 36: 159-64, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24935084

ABSTRACT

Electrical stimulation applied to the basolateral amygdala in the pentylenetetrazole animal model of seizures may result in either a proconvulsant or an anticonvulsant effect depending on the interpulse intervals used: periodic or nonperiodic, respectively. We tested the effect of this electrical stimulation temporal coding on the spontaneous and recurrent behavioral seizures produced in the chronic phase of the pilocarpine animal model of temporal lobe epilepsy, an experimental protocol that better mimics the human condition. After 45 days of the pilocarpine-induced status epilepticus, male Wistar rats were submitted to a surgical procedure for the implantation of a bipolar electrical stimulation electrode in the right basolateral amygdala and were allowed to recover for seven days. The animals were then placed in a glass box, and their behaviors were recorded daily on DVD for 6h for 4 consecutive days (control period). Spontaneous recurrent behavioral seizures when showed in animals were further recorded for an extra 4-day period (treatment period), under periodic or nonperiodic electrical stimulation. The number, duration, and severity of seizures (according to the modified Racine's scale) during treatment were compared with those during the control period. The nonperiodically stimulated group displayed a significantly reduced total number and duration of seizures. There was no difference between control and treatment periods for the periodically stimulated group. Results corroborate previous findings from our group showing that nonperiodic electrical stimulation has a robust anticonvulsant property. In addition, results from the pilocarpine animal model further strengthen nonperiodic electrical stimulation as a valid therapeutic approach in current medical practice. Our working hypothesis is that temporally unstructured electrical stimulation may wield its effect by desynchronizing neural networks involved in the ictogenic process.


Subject(s)
Amygdala/physiology , Deep Brain Stimulation/methods , Muscarinic Agonists/toxicity , Pilocarpine/toxicity , Status Epilepticus/chemically induced , Status Epilepticus/therapy , Animals , Disease Models, Animal , Male , Rats , Statistics, Nonparametric , Time Factors
12.
Epilepsy Behav ; 38: 32-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24472684

ABSTRACT

Epilepsy is a severely debilitating brain disease, often associated with premature death, which has an urgent need for alternative methods of treatment. In fact, roughly 25% of patients with epilepsy do not have seizures satisfactorily controlled by pharmacological treatment, and 30% of these patients with treatment-refractory seizures are not even eligible for ablative surgery. Epilepsy is most readily identifiable by its seizures and/or paroxysmal events, mostly viewed as spontaneously recurrent and unpredictable, which are caused by stereotyped changes in neurological function associated with hyperexcitability and hypersynchronicity of the underlying neural networks. Treatment has strongly been based on the fixed goal of depressing neuronal activity, working under the veiled assumption that hyperexcitability would lead to synchronous neuronal activity and, therefore, to seizure. Over the last 20-30 years, the emergence of electrical (ES) of deep brain structures, a practicable option for treating patients with otherwise untreatable seizures, has broadened our understanding of anticonvulsant mechanisms that conceptually differ from those of pharmacological treatment. Conversely, the research on ES therapy applied to epilepsy is contributing significantly to untwine the phenomena of excitation from that of synchronization as potential target mechanisms for abolishing seizures and predicting paroxysmal events. This paper is, thus, an addendum to other reviews on the subject of ES therapy in epilepsy which focuses on the desynchronization effect ES has on epileptogenic neural networks rather than its effect on overall brain excitability.


Subject(s)
Deep Brain Stimulation/methods , Electrophysiological Phenomena/physiology , Epilepsy/physiopathology , Epilepsy/therapy , Humans
13.
Epilepsy Behav ; 23(3): 294-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22370119

ABSTRACT

In the PTZ animal model of epilepsy, electrical stimulation applied to the amygdaloid complex may result in either pro-convulsive or anticonvulsant effect, depending on the temporal pattern used (i.e. periodic-PS and non-periodic-NPS electrical stimulation). Our hypothesis is that the anatomical target is a determinant factor for the differential effect of temporally-coded patterns on seizure outcome. The threshold dose of PTZ to elicit forelimb clonus and generalized tonic-clonic seizure behavior was measured. The effect of amygdaloid complex PS on forelimb clonus threshold showed a pro-convulsive effect while NPS was anticonvulsant. NPS also significantly increased generalized tonic-clonic threshold; while PS, although at lower threshold levels, did not present statistical significance. Thalamus stimulation did not affect forelimb clonus threshold and showed similar anticonvulsant profiles for both PS and NPS on generalized tonic-clonic threshold. In summary, the anatomical target is a determinant factor on whether temporally-coded ES differentially modulates seizure outcome.


Subject(s)
Amygdala/physiology , Electric Stimulation Therapy/methods , Epilepsy, Generalized/therapy , Pentylenetetrazole/therapeutic use , Animals , Disease Models, Animal , Epilepsy, Generalized/chemically induced , Epilepsy, Generalized/physiopathology , Male , Pentylenetetrazole/toxicity , Rats , Rats, Wistar , Thalamus/physiology
14.
Prog Biophys Mol Biol ; 105(1-2): 109-18, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21044644

ABSTRACT

Our working hypothesis is that constant inter-pulse interval (IPI) electrical stimulation (ES) would resonate with endogenous epileptogenic reverberating circuits, favoring seizure, while random inter-interval ES protocol would promote desynchronization of such neural networks, interfering with the abnormal recruitment of neural structures. Male Wistar rats were stereotaxically implanted with a monopolar ES carbon-fiber electrode (minimizing fMRI artifact) in the amygdala. A 7T fMRI scanner was used to evaluate brain activity during ES, fixed four pulses per second ratio, using either a periodic IPI (ES-P) or random IPI (non-periodic ES-NP) stimulation paradigm. Appropriate imaging protocols were used to compare baseline BOLD (blood oxygen level dependent) MRI with scans during ES. A second series of experiments, both without stimuli and under the same ES paradigms, were evaluated during continuous infusion of pentylenetetrazole (PTZ, 4 mg/ml/min) through an i.v. catheter. Our results show that temporal lobe activation during ES-P or ES-NP did not present any statistical differences during ES. However, during PTZ infusion, PTZ-P facilitated recruitment of the temporal lobe ipsilateral to ES while PTZ-NP showed significantly less activation ipsilateral to ES and, in turn, less inter-hemispheric differences. Altogether, our results support the hypothesis of reverberating circuits being synchronized by ES-P and desynchronized by ES-NP. Time-coded low frequency stimulation may be an interesting alternative treatment for patients with refractory epilepsy.


Subject(s)
Electric Stimulation/methods , Magnetic Resonance Imaging/methods , Recruitment, Neurophysiological/physiology , Seizures/physiopathology , Seizures/therapy , Amygdala/physiology , Animals , Brain Mapping , Electroencephalography/methods , Epilepsy/physiopathology , Humans , Male , Pentylenetetrazole , Rats , Rats, Wistar , Seizures/chemically induced , Stereotaxic Techniques/instrumentation
15.
Epilepsy Behav ; 14 Suppl 1: 26-31, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18824246

ABSTRACT

Our working hypothesis is that constant interpulse interval (IPI) electrical stimulation would resonate with endogenous epileptogenic reverberating circuits, inducing seizures, whereas a random interinterval electrical stimulation protocol would promote desynchronization of such neural networks, producing an anticonvulsant effect. Male Wistar rats were stereotaxically implanted with a bipolar electrical stimulation electrode in the amygdala. Pentylenetetrazole (10mg/ml/min) was continuously infused through an intravenous catheter to induce seizures while four different patterns of temporally coded electrical stimulation were applied: periodic stimulation (PS), pseudo-randomized IPI stimulation (LH), restrictively randomized IPI stimulation (IH), and bursts of 20-ms IPIs (burst). PS decreased the pentylenetetrazole threshold to forelimb clonus, whereas IH increased the threshold to forelimb clonus and to generalized tonic-clonic seizures. We hypothesize that PS facilitates forelimb clonus by reverberating with epileptogenic circuits in the limbic system, whereas IH delays forelimb clonus and generalized tonic-clonic seizures by desynchronizing the epileptic neural networks in the forebrain-midbrain-hindbrain circuits.


Subject(s)
Amygdala/physiology , Convulsants , Pentylenetetrazole , Seizures/chemically induced , Seizures/physiopathology , Animals , Electric Stimulation , Epilepsy, Tonic-Clonic/chemically induced , Epilepsy, Tonic-Clonic/physiopathology , Male , Rats , Rats, Wistar , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...