Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Clin Cancer Res ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018564

ABSTRACT

PURPOSE: Pseudomyxoma peritonei (PMP) is a rare and poorly understood malignant condition characterized by the accumulation of intra-abdominal mucin produced from peritoneal metastases. Currently, cytoreductive surgery remains the mainstay of treatment but disease recurrence and death after relapse frequently occur in PMP patients. New therapeutic strategies are therefore urgently needed for these patients. EXPERIMENTAL DESIGN: A total of 120 PMP samples from 50 patients were processed to generate a collection of 50 patient-derived organoids (PDO) and xenograft (PDX) models. Whole exome sequencing (WES), immunohistochemistry analyses and in vitro and in vivo drug efficacy studies were performed. RESULTS: In this study, we have generated a collection of PMP preclinical models and identified druggable targets, including BRAFV600E, KRASG12C and KRASG12D,that could also be detected in intra-abdominal mucin biopsies of PMP patients using droplet digital PCR. Preclinical models preserved the histopathological markers from the original patient sample. The BRAFV600E inhibitor encorafenib reduced cell viability of BRAFV600E PMP-PDO models. Proof-of-concept in vivo experiments showed that a systemic treatment with encorafenib significantly reduced tumor growth and prolonged survival in subcutaneous and orthotopic BRAFV600E-PMP-PDX mouse models. CONCLUSIONS: Our study demonstrates for the first time that systemic targeted therapies can effectively control PMP tumors. BRAF signaling pathway inhibition represents a new therapeutic opportunity for BRAFV600E PMP patients who have a poor prognosis. Importantly, our present data and collection of preclinical models pave the way for evaluating the efficacy of other systemic targeted therapies toward extending the promise of precision oncology to PMP patients.

2.
Mol Ther ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38894542

ABSTRACT

HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.

4.
Br J Cancer ; 130(8): 1402-1413, 2024 May.
Article in English | MEDLINE | ID: mdl-38467828

ABSTRACT

BACKGROUND: Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS: We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS: The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS: AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.


Subject(s)
Aurora Kinase A , Colorectal Neoplasms , Humans , Cetuximab/pharmacology , Cetuximab/metabolism , Aurora Kinase A/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
5.
J Transl Med ; 22(1): 29, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184610

ABSTRACT

BACKGROUND: The current therapeutic algorithm for Advanced Stage Melanoma comprises of alternating lines of Targeted and Immuno-therapy, mostly via Immune-Checkpoint blockade. While Comprehensive Genomic Profiling of solid tumours has been approved as a companion diagnostic, still no approved predictive biomarkers are available for Melanoma aside from BRAF mutations and the controversial Tumor Mutational Burden. This study presents the results of a Multi-Centre Observational Clinical Trial of Comprehensive Genomic Profiling on Target and Immuno-therapy treated advanced Melanoma. METHODS: 82 samples, collected from 7 Italian Cancer Centres of FFPE-archived Metastatic Melanoma and matched blood were sequenced via a custom-made 184-gene amplicon-based NGS panel. Sequencing and bioinformatics analysis was performed at a central hub. Primary analysis was carried out via the Ion Reporter framework. Secondary analysis and Machine Learning modelling comprising of uni and multivariate, COX/Lasso combination, and Random Forest, was implemented via custom R/Python scripting. RESULTS: The genomics landscape of the ACC-mela cohort is comparable at the somatic level for Single Nucleotide Variants and INDELs aside a few gene targets. All the clinically relevant targets such as BRAF and NRAS have a comparable distribution thus suggesting the value of larger scale sequencing in melanoma. No comparability is reached at the CNV level due to biotechnological biases and cohort numerosity. Tumour Mutational Burden is slightly higher in median for Complete Responders but fails to achieve statistical significance in Kaplan-Meier survival analysis via several thresholding strategies. Mutations on PDGFRB, NOTCH3 and RET were shown to have a positive effect on Immune-checkpoint treatment Overall and Disease-Free Survival, while variants in NOTCH4 were found to be detrimental for both endpoints. CONCLUSIONS: The results presented in this study show the value and the challenge of a genomics-driven network trial. The data can be also a valuable resource as a validation cohort for Immunotherapy and Target therapy genomic biomarker research.


Subject(s)
Early Detection of Cancer , Melanoma , Humans , Melanoma/genetics , Proto-Oncogene Proteins B-raf , Genomics , Italy
6.
Genome Med ; 15(1): 37, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189167

ABSTRACT

BACKGROUND: Transcriptional classification has been used to stratify colorectal cancer (CRC) into molecular subtypes with distinct biological and clinical features. However, it is not clear whether such subtypes represent discrete, mutually exclusive entities or molecular/phenotypic states with potential overlap. Therefore, we focused on the CRC Intrinsic Subtype (CRIS) classifier and evaluated whether assigning multiple CRIS subtypes to the same sample provides additional clinically and biologically relevant information. METHODS: A multi-label version of the CRIS classifier (multiCRIS) was applied to newly generated RNA-seq profiles from 606 CRC patient-derived xenografts (PDXs), together with human CRC bulk and single-cell RNA-seq datasets. Biological and clinical associations of single- and multi-label CRIS were compared. Finally, a machine learning-based multi-label CRIS predictor (ML2CRIS) was developed for single-sample classification. RESULTS: Surprisingly, about half of the CRC cases could be significantly assigned to more than one CRIS subtype. Single-cell RNA-seq analysis revealed that multiple CRIS membership can be a consequence of the concomitant presence of cells of different CRIS class or, less frequently, of cells with hybrid phenotype. Multi-label assignments were found to improve prediction of CRC prognosis and response to treatment. Finally, the ML2CRIS classifier was validated for retaining the same biological and clinical associations also in the context of single-sample classification. CONCLUSIONS: These results show that CRIS subtypes retain their biological and clinical features even when concomitantly assigned to the same CRC sample. This approach could be potentially extended to other cancer types and classification systems.


Subject(s)
Colorectal Neoplasms , Animals , Humans , Colorectal Neoplasms/pathology , Prognosis , Disease Models, Animal , Biomarkers, Tumor/genetics
7.
Mol Oncol ; 17(8): 1474-1491, 2023 08.
Article in English | MEDLINE | ID: mdl-37183363

ABSTRACT

The introduction of targeted therapies represented one of the most significant advances in the treatment of BRAFV600E melanoma. However, the onset of acquired resistance remains a challenge. Previously, we showed in mouse xenografts that vascular endothelial growth factor (VEGFA) removal enhanced the antitumor effect of BRAF inhibition through the recruitment of M1 macrophages. In this work, we explored the strategy of VEGFA/BRAF inhibition in immunocompetent melanoma murine models. In BRAF mutant D4M melanoma tumors, VEGFA/BRAF targeting reshaped the tumor microenvironment, largely by stimulating infiltration of M1 macrophages and CD8+ T cells, and sensitized tumors to immune checkpoint blockade (ICB). Furthermore, we reported that the association of VEGFA/BRAF targeting with anti-PD-1 antibody (triple therapy) resulted in a durable response and enabled complete tumor eradication in 50% of the mice, establishing immunological memory. Neutralization and CRISPR-Cas-mediated editing of granulocyte-macrophage colony-stimulating factor (GM-CSF) abrogated antitumor response prompted by triple therapy and identified GM-CSF as the cytokine instrumental in M1-macrophage recruitment. Our data suggest that VEGFA/BRAF targeting in melanoma induces the activation of innate and adaptive immunity and prepares tumors for ICB. Our study contributes to understanding the tumor biology of BRAFV600E melanoma and suggests VEGFA as therapeutic target.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Melanoma , Humans , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , CD8-Positive T-Lymphocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Melanoma/metabolism , Macrophages/metabolism , Tumor Microenvironment
8.
Front Oncol ; 13: 1130852, 2023.
Article in English | MEDLINE | ID: mdl-36816936

ABSTRACT

High-grade mucinous colorectal cancer (HGM CRC) is particularly aggressive, prone to metastasis and treatment resistance, frequently accompanied by "signet ring" cancer cells. A sizeable fraction of HGM CRCs (20-40%) arises in the context of the Lynch Syndrome, an autosomal hereditary syndrome that predisposes to microsatellite instable (MSI) CRC. Development of patient-derived preclinical models for this challenging subtype of colorectal cancer represents an unmet need in oncology. We describe here successful propagation of preclinical models from a case of early-onset, MSI-positive metastatic colorectal cancer in a male Lynch syndrome patient, refractory to standard care (FOLFOX6, FOLFIRI-Panitumumab) and, surprisingly, also to immunotherapy. Surgical material from a debulking operation was implanted in NOD/SCID mice, successfully yielding one patient-derived xenograft (PDX). PDX explants were subsequently used to generate 2D and 3D cell cultures. Histologically, all models resembled the tumor of origin, displaying a high-grade mucinous phenotype with signet ring cells. For preclinical exploration of alternative treatments, in light of recent findings, we considered inhibition of the proteasome by bortezomib and of the related NEDD8 pathway by pevonedistat. Indeed, sensitivity to bortezomib was observed in mucinous adenocarcinoma of the lung, and we previously found that HGM CRC is preferentially sensitive to pevonedistat in models with low or absent expression of cadherin 17 (CDH17), a differentiation marker. We therefore performed IHC on the tumor and models, and observed no CDH17 expression, suggesting sensitivity to pevonedistat. Both bortezomib and pevonedistat showed strong activity on 2D cells at 72 hours and on 3D organoids at 7 days, thus providing valid options for in vivo testing. Accordingly, three PDX cohorts were treated for four weeks, respectively with vehicle, bortezomib and pevonedistat. Both drugs significantly reduced tumor growth, as compared to the vehicle group. Interestingly, while bortezomib was more effective in vitro, pevonedistat was more effective in vivo. Drug efficacy was further substantiated by a reduction of cellularity and of Ki67-positive cells in the treated tumors. These results highlight proteasome and NEDD8 inhibition as potentially effective therapeutic approaches against Lynch syndrome-associated HGM CRC, also when the disease is refractory to all available treatment options.

9.
J Exp Clin Cancer Res ; 41(1): 266, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056393

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/ß-catenin pathway. METHODS: After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied. RESULTS: Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates ß-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an "EMT phenotype" in CRC cell lines CONCLUSIONS: In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field.


Subject(s)
Cell Adhesion Molecules, Neuronal , Colorectal Neoplasms , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Mice , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
10.
Genes Chromosomes Cancer ; 61(12): 740-746, 2022 12.
Article in English | MEDLINE | ID: mdl-35999193

ABSTRACT

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.


Subject(s)
Chylothorax , Hamartoma , Hypophosphatemia , Nevus, Pigmented , Nevus , Rickets, Hypophosphatemic , Skin Neoplasms , DNA , GTP Phosphohydrolases/genetics , Humans , Hypophosphatemia/diagnosis , Hypophosphatemia/genetics , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase Kinases , Nevus, Pigmented/diagnosis , Nevus, Pigmented/genetics , Nevus, Pigmented/metabolism , Phosphates , Phosphatidylinositol 3-Kinases , Rickets, Hypophosphatemic/genetics , Skin Neoplasms/genetics , Syndrome
11.
Nat Commun ; 13(1): 1503, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314684

ABSTRACT

Although reprogramming of cellular metabolism is a hallmark of cancer, little is known about how metabolic reprogramming contributes to early stages of transformation. Here, we show that the histone deacetylase SIRT6 regulates tumor initiation during intestinal cancer by controlling glucose metabolism. Loss of SIRT6 results in an increase in the number of intestinal stem cells (ISCs), which translates into enhanced tumor initiating potential in APCmin mice. By tracking down the connection between glucose metabolism and tumor initiation, we find a metabolic compartmentalization within the intestinal epithelium and adenomas, where a rare population of cells exhibit features of Warburg-like metabolism characterized by high pyruvate dehydrogenase kinase (PDK) activity. Our results show that these cells are quiescent cells expressing +4 ISCs and enteroendocrine markers. Active glycolysis in these cells suppresses ROS accumulation and enhances their stem cell and tumorigenic potential. Our studies reveal that aerobic glycolysis represents a heterogeneous feature of cancer, and indicate that this metabolic adaptation can occur in non-dividing cells, suggesting a role for the Warburg effect beyond biomass production in tumors.


Subject(s)
Neoplasms , Sirtuins , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Glycolysis/physiology , Intestines/pathology , Mice , Neoplasms/pathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Sirtuins/metabolism
12.
BMC Genomics ; 23(1): 156, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193494

ABSTRACT

BACKGROUND: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons - ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium. MAIN BODY: In this paper we describe the main features of the EurOPDX Data Portal ( https://dataportal.europdx.eu/ ), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views. (SHORT) CONCLUSION: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users' interests.


Subject(s)
Neoplasms , Animals , Heterografts , Humans , Information Dissemination , Mice , Neoplasms/genetics , Precision Medicine , Xenograft Model Antitumor Assays
13.
Cancers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34359705

ABSTRACT

Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies. To identify drugs that can be effectively combined with pevonedistat, we performed a "drop-out" loss-of-function synthetic lethality screening with an shRNA library covering 200 drug-target genes in four different CRC cell lines. Multiple screening hits were found to be involved in the EGFR signaling pathway, suggesting that, rather than inhibition of a specific gene, interference with the EGFR pathway at any level could be effectively leveraged for combination therapies based on pevonedistat. Exploiting both BRAF-mutant and RAS/RAF wild-type CRC models, we validated the therapeutic relevance of our findings by showing that combined blockade of NEDD8 and EGFR pathways led to increased growth arrest and apoptosis both in vitro and in vivo. Pathway modulation analysis showed that compensatory feedback loops induced by single treatments were blunted by the combinations. These results unveil possible therapeutic opportunities in specific CRC clinical settings.

14.
Clin Cancer Res ; 27(21): 5979-5992, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34426441

ABSTRACT

PURPOSE: Regorafenib (REG) is approved for the treatment of metastatic colorectal cancer, but has modest survival benefit and associated toxicities. Robust predictive/early response biomarkers to aid patient stratification are outstanding. We have exploited biological pathway analyses in a patient-derived xenograft (PDX) trial to study REG response mechanisms and elucidate putative biomarkers. EXPERIMENTAL DESIGN: Molecularly subtyped PDXs were annotated for REG response. Subtyping was based on gene expression (CMS, consensus molecular subtype) and copy-number alteration (CNA). Baseline tumor vascularization, apoptosis, and proliferation signatures were studied to identify predictive biomarkers within subtypes. Phospho-proteomic analysis was used to identify novel classifiers. Supervised RNA sequencing analysis was performed on PDXs that progressed, or did not progress, following REG treatment. RESULTS: Improved REG response was observed in CMS4, although intra-subtype response was variable. Tumor vascularity did not correlate with outcome. In CMS4 tumors, reduced proliferation and higher sensitivity to apoptosis at baseline correlated with response. Reverse phase protein array (RPPA) analysis revealed 4 phospho-proteomic clusters, one of which was enriched with non-progressor models. A classification decision tree trained on RPPA- and CMS-based assignments discriminated non-progressors from progressors with 92% overall accuracy (97% sensitivity, 67% specificity). Supervised RNA sequencing revealed that higher basal EPHA2 expression is associated with REG resistance. CONCLUSIONS: Subtype classification systems represent canonical "termini a quo" (starting points) to support REG biomarker identification, and provide a platform to identify resistance mechanisms and novel contexts of vulnerability. Incorporating functional characterization of biological systems may optimize the biomarker identification process for multitargeted kinase inhibitors.


Subject(s)
Colorectal Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Pyridines/therapeutic use , Xenograft Model Antitumor Assays , Animals , Biomarkers, Tumor , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Disease Models, Animal , Mice , Treatment Outcome
15.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439247

ABSTRACT

RNA binding proteins are well recognized as critical regulators of tumorigenic processes through their capacity to modulate RNA biogenesis, including alternative splicing, RNA stability and mRNA translation. The RNA binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) can act as a tumor suppressor or promoter in a cell type- and disease context-dependent manner. We have previously shown that elevated expression of ESRP1 in colorectal cancer cells can drive tumor progression. To gain further insights into the pro-tumorigenic mechanism of action of ESRP1, we performed cDNA microarray analysis on two colorectal cells lines modulated for ESRP1 expression. Intriguingly, RAC1b was highly expressed, both at mRNA and protein levels, in ESRP1-overexpressing cells, while the opposite trend was observed in ESRP1-silenced CRC cells. Moreover, RAC1 and RAC1b mRNA co-immunoprecipitate with ESRP1 protein. Silencing of RAC1b expression significantly reduced the number of soft agar colonies formed by ESRP1-overexpressing cells, suggesting that ESRP1 acted, at least partially, through RAC1b in its tumor-promoting activities in CRC cells. Thus, our data provide molecular cues on targetable candidates in CRC cases with high ESRP1 expression.

16.
Cell Rep ; 35(11): 109252, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34133926

ABSTRACT

Heme is an iron-containing porphyrin of vital importance for cell energetic metabolism. High rates of heme synthesis are commonly observed in proliferating cells. Moreover, the cell-surface heme exporter feline leukemia virus subgroup C receptor 1a (FLVCR1a) is overexpressed in several tumor types. However, the reasons why heme synthesis and export are enhanced in highly proliferating cells remain unknown. Here, we illustrate a functional axis between heme synthesis and heme export: heme efflux through the plasma membrane sustains heme synthesis, and implementation of the two processes down-modulates the tricarboxylic acid (TCA) cycle flux and oxidative phosphorylation. Conversely, inhibition of heme export reduces heme synthesis and promotes the TCA cycle fueling and flux as well as oxidative phosphorylation. These data indicate that the heme synthesis-export system modulates the TCA cycle and oxidative metabolism and provide a mechanistic basis for the observation that both processes are enhanced in cells with high-energy demand.


Subject(s)
Citric Acid Cycle , Heme/biosynthesis , Oxidative Phosphorylation , Animals , Biological Transport , Caco-2 Cells , Heme/metabolism , Humans , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mice, SCID , Receptors, Virus/metabolism , Xenograft Model Antitumor Assays
17.
Genes (Basel) ; 13(1)2021 12 21.
Article in English | MEDLINE | ID: mdl-35052347

ABSTRACT

The RAF1:p.Ser257Leu variant is associated with severe Noonan syndrome (NS), progressive hypertrophic cardiomyopathy (HCM), and pulmonary hypertension. Trametinib, a MEK-inhibitor approved for treatment of RAS/MAPK-mutated cancers, is an emerging treatment option for HCM in NS. We report a patient with NS and HCM, treated with Trametinib and documented by global RNA sequencing before and during treatment to define transcriptional effects of MEK-inhibition. A preterm infant with HCM carrying the RAF1:p.Ser257Leu variant, rapidly developed severe congestive heart failure (CHF) unresponsive to standard treatments. Trametinib was introduced (0.022 mg/kg/day) with prompt clinical improvement and subsequent amelioration of HCM at ultrasound. The appearance of pulmonary artery aneurysm and pulmonary hypertension contributed to a rapid worsening after ventriculoperitoneal shunt device placement for posthemorrhagic hydrocephalus: she deceased for untreatable CHF at 3 months of age. Autopsy showed severe obstructive HCM, pulmonary artery dilation, disarrayed pulmonary vascular anatomy consistent with pulmonary capillary hemangiomatosis. Transcriptome across treatment, highlighted robust transcriptional changes induced by MEK-inhibition. Our findings highlight a previously unappreciated connection between pulmonary vascular disease and the severe outcome already reported in patients with RAF1-associated NS. While MEK-inhibition appears a promising therapeutic option for HCM in RASopathies, it appears insufficient to revert pulmonary hypertension.


Subject(s)
Cardiomyopathy, Hypertrophic/drug therapy , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/prevention & control , MAP Kinase Kinase Kinases/antagonists & inhibitors , Noonan Syndrome/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-raf/genetics , Fatal Outcome , Female , Humans , Infant, Newborn , Exome Sequencing
18.
ESMO Open ; 5(5): e000937, 2020 10.
Article in English | MEDLINE | ID: mdl-33122354

ABSTRACT

PURPOSE: Overexpression of miR-100 in stem cells derived from basal-like breast cancers causes loss of stemness, induction of luminal breast cancer markers and response to endocrine therapy. We, therefore, explored miR-100 as a novel biomarker in patients with luminal breast cancer. METHODS: miR-100 expression was studied in 90 patients with oestrogen-receptor-positive/human-epidermal growth factor receptor 2-negative breast cancer enrolled in a prospective study of endocrine therapy given either preoperatively, or for the treatment of de novo metastatic disease. Response was defined as a Ki67 ≤2.7% after 21±3 days of treatment. The prognostic role of miR-100 expression was evaluated in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) breast cancer datasets. Additionally, we explored the correlation between miR-100 and the expression its targets reported as being associated with endocrine resistance. Finally, we evaluated whether a signature based on miR-100 and its target genes could predict the luminal A molecular subtype. RESULTS: Baseline miR-100 was significantly anticorrelated with baseline and post-treatment Ki67 (p<0.001 and 0.004, respectively), and independently associated with response to treatment (OR 3.329, p=0.047). In the METABRIC dataset, high expression of miR-100 identified women with luminal A tumours treated with adjuvant endocrine therapy with improved overall survival (HR 0.55, p<0.001). miR-100 was negatively correlated with PLK1, FOXA1, mTOR and IGF1R expression, potentially explaining its prognostic effect. Finally, a miR-100-based signature developed in patients enrolled in the prospective study outperformed Ki67 alone in predicting the luminal A phenotype. CONCLUSIONS: Our findings suggest that miR-100 should be further explored as a biomarker in patients with luminal breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Hepatocyte Nuclear Factor 3-alpha , Humans , MicroRNAs/genetics , Prognosis , Prospective Studies
19.
Clin Cancer Res ; 26(23): 6321-6334, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32900797

ABSTRACT

PURPOSE: No effective therapy is available for unresectable soft-tissue sarcomas (STS). This unmet clinical need prompted us to test whether chondroitin sulfate proteoglycan 4 (CSPG4)-specific chimeric antigen receptor (CAR)-redirected cytokine-induced killer lymphocytes (CAR.CIK) are effective in eliminating tumor cells derived from multiple STS histotypes in vitro and in immunodeficient mice. EXPERIMENTAL DESIGN: The experimental platform included patient-derived CAR.CIK and cell lines established from multiple STS histotypes. CAR.CIK were transduced with a retroviral vector encoding second-generation CSPG4-specific CAR (CSPG4-CAR) with 4-1BB costimulation. The functional activity of CSPG4-CAR.CIK was explored in vitro, in two- and three-dimensional STS cultures, and in three in vivo STS xenograft models. RESULTS: CSPG4-CAR.CIK were efficiently generated from patients with STS. CSPG4 was highly expressed in multiple STS histotypes by in silico analysis and on all 16 STS cell lines tested by flow cytometry. CSPG4-CAR.CIK displayed superior in vitro cytolytic activity against multiple STS histotypes as compared with paired unmodified control CIK. CSPG4-CAR.CIK also showed strong antitumor activity against STS spheroids; this effect was associated with tumor recruitment, infiltration, and matrix penetration. CSPG4-CAR.CIK significantly delayed or reversed tumor growth in vivo in three STS xenograft models (leiomyosarcoma, undifferentiated pleomorphic sarcoma, and fibrosarcoma). Tumor growth inhibition persisted for up to 2 weeks following the last administration of CSPG4-CAR.CIK. CONCLUSIONS: This study has shown that CSPG4-CAR.CIK effectively targets multiple STS histotypes in vitro and in immunodeficient mice. These results provide a strong rationale to translate the novel strategy we have developed into a clinical setting.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Cytokine-Induced Killer Cells/immunology , Immunotherapy, Adoptive/methods , Lymphocytes/immunology , Membrane Proteins/metabolism , Receptors, Chimeric Antigen/immunology , Sarcoma/therapy , Animals , Apoptosis , Cell Proliferation , Chondroitin Sulfate Proteoglycans/genetics , Female , Humans , Interleukin-2/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Sarcoma/immunology , Sarcoma/metabolism , Sarcoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Sci Transl Med ; 12(555)2020 08 05.
Article in English | MEDLINE | ID: mdl-32759276

ABSTRACT

Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease.


Subject(s)
Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , ErbB Receptors , Humans , Neoplasm Recurrence, Local , Neoplasm, Residual , Paneth Cells , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL