Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(49): 107498-107516, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37126160

ABSTRACT

The near-dry electrical discharge machining processes have been conducted using air-mist or gas mist as a dielectric fluid to minimize the environmental impacts. In this article, near-dry electrical discharge machining (NDEDM) experiments have been performed to improve machining performance using an oxygen-mist dielectric fluid, a copper composite electrode, and Cu-Al-Be polycrystalline shape memory alloy (SMA) work materials. The copper composite electrode is made up of 12 wt% silicon carbide and 9 wt% graphite particles. The oxygen-mist pressure (Op), pulse on time (Ton), spark current (Ip), gap voltage (Gv), and flow rate of mixed water (Fr) were used as process parameters, and the material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR) were used as performance characteristics. The global optimal alternative solution has been predicted by the PROMETHEE-II (Preference Ranking Organization METhod for Enrichment Evaluations-II) optimization technique. The best combinations of process parameters have been used to examine the microstructure of composite tools and SMA-machined surfaces by scanning electron microscopy (SEM) analysis. The best global optimum settings (oP: 9 bar, Ip: 60 µs, Ip: 12 A, Gv: 40 V, and Fr: 12 ml/min) are predicted to attain optimum machining performance (MRR: 39.049 g/min, TWR: 1.586 g/min, and SR: 1.78 µm). The tool wear rate of the NDEDM process has been significantly reduced by the copper composite electrode due to increasing microhardness, wear resistance, and melting point. When compared to the pure copper electrode tool, the MRR of NDEDM is improved to 21.91%, while the TWR and SR are reduced to 46.66% and 35.02%, respectively.


Subject(s)
Copper , Shape Memory Alloys , Alloys , Electrodes , Oxygen
2.
Micromachines (Basel) ; 14(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36838147

ABSTRACT

The present research work represents the numerical study of the device performance of a lead-free Cs2TiI6-XBrX-based mixed halide perovskite solar cell (PSC), where x = 1 to 5. The open circuit voltage (VOC) and short circuit current (JSC) in a generic TCO/electron transport layer (ETL)/absorbing layer/hole transfer layer (HTL) structure are the key parameters for analyzing the device performance. The entire simulation was conducted by a SCAPS-1D (solar cell capacitance simulator- one dimensional) simulator. An alternative FTO/CdS/Cs2TiI6-XBrX/CuSCN/Ag solar cell architecture has been used and resulted in an optimized absorbing layer thickness at 0.5 µm thickness for the Cs2TiBr6, Cs2TiI1Br5, Cs2TiI2Br4, Cs2TiI3Br3 and Cs2TiI4Br2 absorbing materials and at 1.0 µm and 0.4 µm thickness for the Cs2TiI5Br1 and Cs2TiI6 absorbing materials. The device temperature was optimized at 40 °C for the Cs2TiBr6, Cs2TiI1Br5 and Cs2TiI2Br4 absorbing layers and at 20 °C for the Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and Cs2TiI6 absorbing layers. The defect density was optimized at 1010 (cm-3) for all the active layers.

SELECTION OF CITATIONS
SEARCH DETAIL