Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 39(5): 1042-1056, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38452349

ABSTRACT

STUDY QUESTION: What is the human endometrial non-classical progesterone receptor (PGR) membrane component 2 (PGRMC2) expression pattern throughout the menstrual cycle and what role does it play during decidualization? SUMMARY ANSWER: Endometrial PGRMC2 expression fluctuates during the human menstrual cycle and is abundantly expressed in human endometrial stromal cells (hEnSCs) during in vitro decidualization, process where PGRMC2 is involved in embryo implantation-related pathways. WHAT IS KNOWN ALREADY: The endometrial response to progesterone is mediated by the classical and non-classical PGRs. We previously demonstrated that PGR membrane component 1 (PGRMC1) is critical for endometrial function, embryo implantation, and future placentation, however, the role(s) of PGRMC2, which is structurally similar to PGRMC1, have not been studied in the human endometrium. STUDY DESIGN, SIZE, DURATION: This prospective study comprehensively evaluated the endometrial expression of PGRMC2 throughout the human menstrual cycle and during in vitro decidualization of hEnSCs (isolated from 77 endometrial biopsies that were collected from 66 oocyte donors), using immunohistochemistry, RT-qPCR, western blot, transcriptomic, and proteomic analyses. In addition, functional analysis was carried out to validate the implication of PGRMC2 in hEnSCs during embryo invasion using an in vitro outgrowth model. PARTICIPANTS/MATERIALS, SETTING, METHODS: In vitro decidualization of hEnSCs was induced using co-treatment with cAMP and medroxyprogesterone 17-acetate progestin, and evaluated by measuring prolactin by ELISA and F-actin immunostaining. RT-qPCR was employed to compare expression with other PGRs. To reveal the function of PGRMC2 during the decidualization process, we specifically knocked down PGRMC2 with siRNAs and performed RNA-seq and quantitative proteomics techniques (SWATH-MS). The common differentially expressed genes (DEGs) and proteins (DEPs) were considered for downstream functional enrichment analysis. Finally, to verify its implication in the trophoblast invasion, an outgrowth model was carried out where hEnSCs with silenced PGRMC2 were co-cultured with human trophoblastic spheroids (JEG-3) following in vitro decidualization. MAIN RESULTS AND THE ROLE OF CHANCE: In contrast to PGRMC1 and classical PGRs, endometrial PGRMC2 gene expression was significantly lower during the late- versus mid-secretory phase (P < 0.05). Accordingly, the elevated PGRMC2 protein abundance observed in the endometrial epithelial glands throughout the menstrual cycle dropped in the late secretory phase, when abundance decreased in all endometrial compartments. Nevertheless, PGRMC2 protein increased during the mid-secretory phase in stromal and glandular cells, and PGRMC2 mRNA (P < 0.0001) and protein (P < 0.001) levels were significantly enhanced in the membranes/organelles of decidualized hEnSCs, compared to non-decidualized hEnSCs. Notably, PGRMC1 and PGRMC2 mRNA were significantly more abundant than classical PGRs throughout menstrual cycle phases and in decidualized and non-decidualized hEnSCs (P < 0.05). RNA-seq and proteomics data revealed 4687 DEGs and 28 DEPs, respectively, in decidualized hEnSCs after PGRMC2 silencing. While functional enrichment analysis showed that the 2420 upregulated genes were mainly associated with endoplasmic reticulum function, vesicular transport, morphogenesis, angiogenesis, cell migration, and cell adhesion, the 2267 downregulated genes were associated with aerobic respiration and protein biosynthesis. The protein enrichment analysis showed that 4 upregulated and 24 downregulated proteins were related to aerobic respiration, cellular response, metabolism, localization of endoplasmic reticulum proteins, and ribonucleoside biosynthesis routes. Finally, PGRMC2 knockdown significantly compromised the ability of the decidualized hEnSCs to support trophoblast expansion in an outgrowth model (P < 0.05). LARGE-SCALE DATA: Transcriptomic data are available via NCBI's Gene Expression Omnibus (GEO) under GEO Series accession number GSE251843 and proteomic data via ProteomeXchange with identifier PXD048494. LIMITATIONS, REASONS FOR CAUTION: The functional analyses were limited by the discrete number of human endometrial biopsies. A larger sample size is required to further investigate the potential role(s) of PGRMC2 during embryo implantation and maintenance of pregnancy. Further, the results obtained in the present work should be taken with caution, as the use of a pure primary endometrial stromal population differentiated in vitro does not fully represent the heterogeneity of the endometrium in vivo, nor the paracrine communications occurring between the distinct endometrial cell types. WIDER IMPLICATIONS OF THE FINDINGS: The repression of endometrial PGRMC2 during the late- versus mid-secretory phase, together with its overexpression during decidualization and multiple implications with embryo implantation not only highlighted the unknown roles of PGRMC2 in female reproduction but also the potential to exploit PGRMC2 signaling pathways to improve assisted reproduction treatments in the future. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by Instituto de Salud Carlos III (ISCIII) granted to F.D. (PI20/00405 and PI23/00860), co-funded by the European Union. Y.M.-L. was supported by a predoctoral research grant from Generalitat Valenciana (ACIF/2019/262). R.G.-M. was supported by Generalitat Valenciana (CIAPOT/2022/15). P.d.C. was supported by a predoctoral grant for training in research into health (PFIS FI20/00086) from the Instituto de Salud Carlos III. I.D.-H. was supported by the Spanish Ministry of Science, Innovation and Universities (FPU18/01550). A.P. was supported by the Instituto de Salud Carlos III (PFIS FI18/00009). This research was also supported by IVI Foundation-RMA Global (1911-FIVI-103-FD). The authors declare no conflict of interest.


Subject(s)
Decidua , Embryo Implantation , Endometrium , Membrane Proteins , Menstrual Cycle , Receptors, Progesterone , Stromal Cells , Humans , Female , Endometrium/metabolism , Endometrium/cytology , Receptors, Progesterone/metabolism , Menstrual Cycle/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Decidua/metabolism , Embryo Implantation/physiology , Stromal Cells/metabolism , Adult , Prospective Studies
2.
Front Endocrinol (Lausanne) ; 14: 1229033, 2023.
Article in English | MEDLINE | ID: mdl-37664846

ABSTRACT

Endometrial function is dependent on a tight crosstalk between the epithelial and stromal cells of the endometrium. This communication is critical to ensure a fertile uterus and relies on progesterone and estrogen signaling to prepare a receptive uterus for embryo implantation in early pregnancy. One of the key mediators of this crosstalk is the orphan nuclear receptor NR2F2, which regulates uterine epithelial receptivity and stromal cell differentiation. In order to determine the molecular mechanism regulated by NR2F2, RNAseq analysis was conducted on the uterus of PgrCre;Nr2f2f/f mice at Day 3.5 of pregnancy. This transcriptomic analysis demonstrated Nr2f2 ablation in Pgr-expressing cells leads to a reduction of Hand2 expression, increased levels of Hand2 downstream effectors Fgf1 and Fgf18, and a transcriptome manifesting suppressed progesterone signaling with an altered immune baseline. ChIPseq analysis conducted on the Day 3.5 pregnant mouse uterus for NR2F2 demonstrated the majority of NR2F2 occupies genomic regions that have H3K27ac and H3K4me1 histone modifications, including the loci of major uterine transcription regulators Hand2, Egr1, and Zbtb16. Furthermore, functional analysis of an NR2F2 occupying site that is conserved between human and mouse was capable to enhance endogenous HAND2 mRNA expression with the CRISPR activator in human endometrial stroma cells. These data establish the NR2F2 dependent regulation of Hand2 in the stroma and identify a cis-acting element for this action. In summary, our findings reveal a role of the NR2F2-HAND2 regulatory axis that determines the uterine transcriptomic pattern in preparation for the endometrial receptivity.


Subject(s)
Progesterone , Uterus , Female , Humans , Pregnancy , Animals , Mice , Progesterone/pharmacology , Signal Transduction , Endometrium , Orphan Nuclear Receptors , COUP Transcription Factor II
3.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240143

ABSTRACT

Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.


Subject(s)
Antioxidants , Endometrium , Female , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Endometrium/metabolism , Embryo Implantation/physiology , Trophoblasts/metabolism , Dietary Supplements , Stromal Cells/metabolism , Decidua , Cells, Cultured
4.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232341

ABSTRACT

Environmental factors that have been linked to an increased endometriosis risk include exposure to di-(2-ethylhexyl)-phthalate (DEHP), an endocrine disruptor. This study aims to investigate whether DEHP in vitro exposure in primary endometrial stromal cells (EnSC), primary endometrial epithelial cells (EnEC), and the human endometrial adenocarcinoma cell line Ishikawa properly mimics alterations described in the eutopic endometrium of women with endometriosis. Primary EnSC and EnEC, isolated from six fertile egg donors, and Ishikawa cells were exposed to DEHP (0.1, 1, and 10 µM) and were assessed for viability, endometriosis markers (IL-6, VEGF-A, HOXA10, EZH2, and LSD1), steroid receptor gene expressions (ER-1, ER-2, PR-T, PR-B, and PGRMC1), and invasive capacity. Viability after 72 h of DEHP exposure was not significantly affected. None of the endometriosis markers studied were altered after acute DEHP exposure, nor was the expression of steroid receptors. The invasive capacity of EnSC was significantly increased after 10 µM of DEHP exposure. In conclusion, acute DEHP exposure in primary endometrial cells does not fully phenocopy the changes in the viability, expression of markers, or steroidal receptors described in endometriosis. However, the significant increase in EnSC invasiveness observed after DEHP exposure could be a link between DEHP exposure and increased endometriosis likelihood.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Endometriosis , Receptors, Steroid , Diethylhexyl Phthalate/metabolism , Endocrine Disruptors/pharmacology , Endometriosis/chemically induced , Endometriosis/metabolism , Endometrium/metabolism , Female , Histone Demethylases/metabolism , Humans , Interleukin-6/metabolism , Membrane Proteins/metabolism , Phthalic Acids , Receptors, Progesterone/metabolism , Receptors, Steroid/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
Biol Reprod ; 106(5): 1022-1032, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35084015

ABSTRACT

Heavy metal exposures could compromise endometrial cells. Although studies assessed mercury toxicity in cell lines, limited data are available on the concentration of mercury that damage human endometrial stromal cells (hEnSCs) and alter endometrial function. This research aims to study the effects of mercury exposure on cell viability and functional features of hEnSCs. Primary hEnSCs were isolated from 23 endometrial biopsies obtained from healthy donors. After in vitro mercury exposure cell viability of hEnSCs was evaluated via tetrazolium salt metabolism and oxidative stress was assessed by 2', 7'-dichlorofluorescin diacetate assay. hEnSCs were decidualized in vitro in the presence of mercury (0, 25, 50, 75, 250, and 350 nM). Decidualization was evaluated based on prolactin and insulin-like growth factor-binding protein (IGFBP1) secretion and cytoskeletal rearrangement (F-actin staining). Cell proliferation and apoptosis were evaluated by Ki67 immunostaining and TUNEL assay. Mercury doses of 250 nM (P = 0.028) and 500 nM (P = 0.026) increased reactive oxygen species production in hEnSCs after 24 h. Cell viability significantly decreased after 48 h and 72 h (P < 0.05) of mercury exposure at 500 nM. After in vitro decidualization and mercury treatment, decidual hEnSCs showed a dose-dependent decrease in prolactin and IGFBP1 secretion, particularly at 350 nM (P = 0.016). Cell proliferation was decreased in hEnSCs treated with 350 nM mercury (P < 0.001); an increase in apoptosis followed a dose-dependent trend in non-decidual and decidual hEnSCs. These findings support that mercury-induced damage could be due to an increase in ROS production.


Subject(s)
Decidua , Mercury , Cells, Cultured , Decidua/metabolism , Endometrium/metabolism , Female , Humans , Mercury/metabolism , Mercury/pharmacology , Prolactin/metabolism , Stromal Cells/metabolism
6.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681937

ABSTRACT

The progesterone hormone regulates the human menstrual cycle, pregnancy, and parturition by its action via the different progesterone receptors and signaling pathways in the female reproductive tract. Progesterone actions can be exerted through classical and non-classical receptors, or even a combination of both. The former are nuclear receptors whose activation leads to transcriptional activity regulation and thus in turn leads to slower but long-lasting responses. The latter are composed of progesterone receptors membrane components (PGRMC) and membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and they can subsequently initiate specific cell responses or even modulate genomic cell responses. This review covers our current knowledge on the mechanisms of action and the relevance of classical and non-classical progesterone receptors in female reproductive tissues ranging from the ovary and uterus to the cervix, and it exposes their crucial role in female infertility.


Subject(s)
Genitalia, Female/physiopathology , Infertility, Female/pathology , Progesterone/metabolism , Receptors, Progesterone/metabolism , Female , Genitalia, Female/metabolism , Humans , Infertility, Female/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...