Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Health Res ; : 1-12, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37797207

ABSTRACT

The exposure of humans and animals to environmental compounds is rarely restricted to a single chemical. Cadmium (Cd) and lead (Pb) are two heavy metals known to be the most toxic. Deleterious effects of each metal alone are well documented. Unfortunately, very few studies were conducted to determine their combined effect. Four groups of Wistar rats were treated intravenously for 15 days. The control group received physiological saline solution; groups 2 and 3 were treated with Cd chloride and lead acetate, respectively ; and the treatment group 4 received a combined treatment of Cd and Pb . A significant decrease was recorded for hematological parameters , with an increase in white blood cells and an inhibition in δ-ALAD level. Cell injury in the livers and kidneys was clearly shown by the significant elevation of the biochemical markers. Cd and Pb induced oxidative stress and had adverse health effects at lower exposure levels than previously thought.

2.
Ecotoxicology ; 32(6): 802-810, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37561277

ABSTRACT

Soil contamination by cadmium (Cd) and degradation by salinity are likely to become one of the most important problems hindering food production and human health. However, their combined effect on crops is still ambiguous. A hydroponic study was made to investigate the separate and combined exposure of 100 µM Cd and 150 µM NaCl on soybeans (Glycine max L.) growth, photosynthetic pigment, and antioxidant systems for 7 days. Both Cd and NaCl, applied separately decreased the seedlings growth, chlorophyll contents and caused oxidative stress. However, the toxic effects of salinity applied alone were more pronounced. Interestingly, combined exposure of Cd and NaCl induced higher decreases in all growth parameters and lipid peroxidation than single exposure suggesting synergistic effects. The results implicate that the phytotoxicity of both stressors can be associated with redox status imbalance. Our finding may provide insight into the physiological mechanisms of heavy metal exposure and salinity stress tolerance in soybeans and suggest that saline stress changes the effects of Cd toxicity on crops in Cd-salt-polluted soils.


Subject(s)
Cadmium , Metals, Heavy , Humans , Cadmium/toxicity , Cadmium/metabolism , Glycine max , Sodium Chloride/toxicity , Salt Tolerance , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL