Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Surg ; 278(6): e1289-e1298, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37325925

ABSTRACT

OBJECTIVE: To characterize the role of neutrophil extracellular traps (NETs) in heterotopic ossification (HO) formation and progression and to use mechanical and pharmacological methods to decrease NETosis and mitigate HO formation. BACKGROUND: Traumatic HO is the aberrant osteochondral differentiation of mesenchymal progenitor cells after traumatic injury, burns, or surgery. While the innate immune response has been shown to be necessary for HO formation, the specific immune cell phenotype and function remain unknown. Neutrophils, one of the earliest immune cells to respond after HO-inducing injuries, can extrude DNA, forming highly inflammatory NETs. We hypothesized that neutrophils and NETs would be diagnostic biomarkers and therapeutic targets for the detection and mitigation of HO. METHODS: C57BL6J mice underwent burn/tenotomy (a well-established mouse model of HO) or a non-HO-forming sham injury. These mice were either (1) ambulated ad libitum, (2) ambulated ad libitum with daily intraperitoneal hydroxychloroquine, ODN-2088 (both known to affect NETosis pathways), or control injections, or (3) had the injured hind limb immobilized. Single-cell analysis was performed to analyze neutrophils, NETosis, and downstream signaling after the HO-forming injury. Immunofluorescence microscopy was used to visualize NETosis at the HO site and neutrophils were identified using flow cytometry. Serum and cell lysates from HO sites were analyzed using enzyme-linked immunosorbent assay for myeloperoxidase-DNA and ELA2-DNA complexes to identify NETosis. Micro-computerized tomography was performed on all groups to analyze the HO volume. RESULTS: Molecular and transcriptional analyses revealed the presence of NETs within the HO injury site, which peaked in the early phases after injury. These NETs were highly restricted to the HO site, with gene signatures derived from both in vitro NET induction and clinical neutrophil characterizations showing a high degree of NET "priming" at the site of injury, but not in neutrophils in the blood or bone marrow. Cell-cell communication analyses revealed that this localized NET formation coincided with high levels of toll-like receptor signaling specific to neutrophils at the injury site. Reducing the overall neutrophil abundance within the injury site, either pharmacologically through treatment with hydroxychloroquine, the toll-like receptor 9 inhibitor OPN-2088, or mechanical treatment with limb offloading, results in the mitigation of HO formation. CONCLUSIONS: These data provide a further understanding of the ability of neutrophils to form NETs at the injury site, clarify the role of neutrophils in HO, and identify potential diagnostic and therapeutic targets for HO mitigation.


Subject(s)
Extracellular Traps , Neutrophils , Animals , Mice , Neutrophils/metabolism , Hydroxychloroquine/metabolism , Extracellular Traps/metabolism , Immunity, Innate , DNA/metabolism
2.
J Infect Dis ; 227(4): 592-601, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36611221

ABSTRACT

Mycobacterium tuberculosis infection outcomes have been described as active tuberculosis or latent infection but a spectrum of outcomes is now recognized. We used a nonhuman primate model, which recapitulates human infection, to characterize the clinical, microbiologic, and radiographic patterns associated with developing latent M. tuberculosis infection. Four patterns were identified. "Controllers" had normal erythrocyte sedimentation rate (ESR) without M. tuberculosis growth in bronchoalveolar lavage or gastric aspirate (BAL/GA). "Early subclinicals" showed transient ESR elevation and/or M. tuberculosis growth on BAL/GA for 60 days postinfection, "mid subclinicals" were positive for 90 days, and "late subclinicals" were positive intermittently, despite the absence of clinical disease. Variability was noted regarding granuloma formation, lung/lymph node metabolic activity, lung/lymph node bacterial burden, gross pathology, and extrapulmonary disease. Like human M. tuberculosis infection, this highlights the heterogeneity associated with the establishment of latent infection, underscoring the need to understand the clinical spectrum and risk factors associated with severe disease.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Latent Tuberculosis/diagnostic imaging , Latent Tuberculosis/microbiology , Lung/pathology , Macaca
3.
Sci Adv ; 8(51): eabq6152, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542719

ABSTRACT

Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.


Subject(s)
Discoidin Domain Receptor 2 , Mice , Animals , Discoidin Domain Receptor 2/genetics , Proteomics , Cell Differentiation/genetics , Extracellular Matrix/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...