Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Development ; 150(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37840454

ABSTRACT

The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.


Subject(s)
Hematopoietic Stem Cells , Signal Transduction , Mice , Animals , Humans , Signal Transduction/genetics , Cell Communication , Gene Expression Profiling , Aorta , Mesonephros , Gonads , Hematopoiesis/genetics
2.
Sci Rep ; 13(1): 10124, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349488

ABSTRACT

We present an approach (knowledge-and-data-driven, KDD, modeling) that allows us to get closer to understanding the processes that affect the dynamics of plankton communities. This approach, based on the use of time series obtained as a result of ecosystem monitoring, combines the key features of both the knowledge-driven modeling (mechanistic models) and data-driven (DD) modeling. Using a KDD model, we reveal the phytoplankton growth-rate fluctuations in the ecosystem of the Naroch Lakes and determine the degree of phase synchronization between fluctuations in the phytoplankton growth rate and temperature variations. More specifically, we estimate a numerical value of the phase locking index (PLI), which allows us to assess how temperature fluctuations affect the dynamics of phytoplankton growth rates. Since, within the framework of KDD modeling, we directly include the time series obtained as a result of field measurements in the model equations, the dynamics of the phytoplankton growth rate obtained from the KDD model reflect the behavior of the lake ecosystem as a whole, and PLI can be considered as a holistic parameter.


Subject(s)
Ecosystem , Phytoplankton , Phytoplankton/physiology , Temperature , Plankton/physiology , Lakes
3.
Sci Transl Med ; 15(698): eabn0736, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37256934

ABSTRACT

Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell-resolution transcriptomic analysis, we identified an "inflammatory" proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)-induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis.


Subject(s)
Hedgehog Proteins , Renal Insufficiency, Chronic , Animals , Humans , Mice , Fibrosis , Hedgehog Proteins/metabolism , Inflammation , NF-kappa B , Tumor Necrosis Factors , Zinc Finger Protein GLI1
4.
Sci Rep ; 12(1): 11979, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831352

ABSTRACT

The ecosystem of the Naroch Lakes (Belarus) includes three water bodies, Lake Batorino, Lake Myastro and Lake Naroch. These lakes have a common catchment area. At the end of the 80 s, the ecosystem of the Naroch Lakes underwent a transformation, during which the nutrient load on the catchment area decreased, and the concentration of phosphorus as a limiting factor in these water bodies decreased significantly. At the same time, the Naroch Lakes were exposed to zebra mussel (Dreissena polymorpha Pallas) invasion. In the mid-90 s, the biological and hydrochemical characteristics of the ecosystem of the Naroch Lakes stabilized. We show here that complex processes associated with the transformation of the lake ecosystem and affecting both trophic interactions in the Naroch Lakes and the influence of environmental factors on them can be represented using a single parameter, the phase-locking index, PLI. In this case, a statistically significant numerical value of PLI characterizes the phase synchronization of two processes, oscillations of the concentration of total phosphorus, TP, and oscillations of the concentration of chlorophyll, Chl. We show that the phase synchronization of these processes occurs only after the stabilization of the ecosystem of the Naroch Lakes. In the period preceding the transformation of the lake ecosystem, there was no synchronization. Numerical evaluation of PLI as a holistic parameter allows us to characterize the transformation of the lake ecosystem as a whole without resorting to study of complex interactions of various factors involved in this transformation.


Subject(s)
Dreissena , Lakes , Animals , Chlorophyll/analysis , Ecosystem , Environmental Monitoring , Eutrophication , Lakes/chemistry , Nitrogen , Phosphorus/analysis , Water
5.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995520

ABSTRACT

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Subject(s)
Dermatoglyphics , Fingers/growth & development , Organogenesis/genetics , Polymorphism, Single Nucleotide , Toes/growth & development , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Asian People/genetics , Body Patterning/genetics , Child , Cohort Studies , Female , Forelimb/growth & development , Genetic Loci , Genome-Wide Association Study , Humans , MDS1 and EVI1 Complex Locus Protein/genetics , Male , Mice , Middle Aged , Young Adult
6.
Stem Cell Reports ; 16(4): 727-740, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33667414

ABSTRACT

Apelin receptor (APLNR/AGTRLl1/APJ) marks a transient cell population during the differentiation of hematopoietic stem and progenitor cells (HSPCs) from pluripotent stem cells, but its function during the production and maintenance of hematopoietic stem cells is not clear. We generated an Aplnr-tdTomato reporter mouse embryonic stem cell (mESC) line and showed that HSPCs are generated exclusively from mesodermal cells that express Aplnr-tdTomato. HSPC production from mESCs was impaired when Aplnr was deleted, implying that this pathway is required for their production. To address the role of APLNR signaling in HSPC maintenance, we added APELIN ligands to ex vivo AGM cultures. Activation of the APLNR pathway in this system impaired the generation of long-term reconstituting HSPCs and appeared to drive myeloid differentiation. Our data suggest that the APLNR signaling is required for the generation of cells that give rise to HSCs, but that its subsequent downregulation is required for their maintenance.


Subject(s)
Apelin Receptors/metabolism , Hematopoiesis , Signal Transduction , Animals , Apelin/metabolism , Apelin Receptors/genetics , Cell Aggregation , Cell Differentiation , Cells, Cultured , Gene Deletion , Gene Expression Regulation , Genes, Reporter , Hemangioblasts/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Ligands , Mesoderm/cytology , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Peptide Hormones/metabolism
7.
Sci Rep ; 10(1): 16523, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020580

ABSTRACT

Glutamate dehydrogenase (GDH) is a key enzyme interlinking carbon and nitrogen metabolism. Recent discoveries of the GDH specific role in breast cancer, hyperinsulinism/hyperammonemia (HI/HA) syndrome, and neurodegenerative diseases have reinvigorated interest on GDH regulation, which remains poorly understood despite extensive and long standing studies. Notwithstanding the growing evidence of the complexity of allosteric network behind GDH regulation, identifications of allosteric factors and associated mechanisms are paramount to deepen our understanding of the complex dynamics that regulate GDH enzymatic activity. Combining structural analyses of cryo-electron microscopy data with molecular dynamic simulations, here we show that the cofactor NADH is a key player in the GDH regulation process. Our structural analysis indicates that, binding to the regulatory sites in proximity of the antenna region, NADH acts as a positive allosteric modulator by enhancing both the affinity of the inhibitor GTP binding and inhibition of GDH catalytic activity. We further show that the binding of GTP to the NADH-bound GDH activates a triangular allosteric network, interlinking the inhibitor with regulatory and catalytic sites. This allostery produces a local conformational rearrangement that triggers an anticlockwise rotational motion of interlinked alpha-helices with specific tilted helical extension. This structural transition is a fundamental switch in the GDH enzymatic activity. It introduces a torsional stress, and the associated rotational shift in the Rossmann fold closes the catalytic cleft with consequent inhibition of the deamination process. In silico mutagenesis examinations further underpin the molecular basis of HI/HA dominant mutations and consequent over-activity of GDH through alteration of this allosteric communication network. These results shed new light on GDH regulation and may lay new foundation in the design of allosteric agents.


Subject(s)
Allosteric Regulation/physiology , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/ultrastructure , Adenosine Diphosphate/metabolism , Biophysics/methods , Computational Biology/methods , Cryoelectron Microscopy/methods , Deamination , Guanosine Triphosphate/metabolism , Hyperammonemia/genetics , Models, Molecular , Molecular Docking Simulation/methods , Mutation/drug effects , NAD/metabolism , Protein Conformation
8.
Cell Stem Cell ; 27(5): 822-839.e8, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32946788

ABSTRACT

Hematopoietic stem cells (HSCs) first emerge in the embryonic aorta-gonad-mesonephros (AGM) region. Studies of model organisms defined intersecting signaling pathways that converge to promote HSC emergence predominantly in the ventral domain of the dorsal aorta. Much less is known about mechanisms driving HSC development in humans. Here, to identify secreted signals underlying human HSC development, we combined spatial transcriptomics analysis of dorsoventral polarized signaling in the aorta with gene expression profiling of sorted cell populations and single cells. Our analysis revealed a subset of aortic endothelial cells with a downregulated arterial signature and a predicted lineage relationship with the emerging HSC/progenitor population. Analysis of the ventrally polarized molecular landscape identified endothelin 1 as an important secreted regulator of human HSC development. The obtained gene expression datasets will inform future studies on mechanisms of HSC development in vivo and on generation of clinically relevant HSCs in vitro.


Subject(s)
Endothelial Cells , Transcriptome , Gonads , Hematopoiesis , Hematopoietic Stem Cells , Humans , Mesonephros , Transcriptome/genetics
9.
Stem Cell Reports ; 15(4): 811-816, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32946804

ABSTRACT

Human hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region during Carnegie stages (CS) 14-17. Although we previously reported that these HSCs can generate no less than 300 daughter HSCs, their actual number has never been established. Here, we show that a single human AGM region HSC can generate 600-1,600 functional daughter HSCs. The presence of HSCs in the CS 17 liver in one case gave us a unique opportunity to describe a reduction of HSC self-renewal potential after liver colonization. From a clinical perspective, the efficacy of long-term hematopoietic regeneration depends on HSC self-renewal capacity. We quantitatively show that this capacity dramatically declines in the umbilical cord blood compared with HSCs in the AGM region. A full appreciation of the vast regenerative potential of the first human embryo-derived HSCs sets a new bar for generation of clinically useful HSCs from pluripotent stem cells.


Subject(s)
Aorta/cytology , Cell Self Renewal , Fetal Blood/cytology , Gonads/cytology , Hematopoietic Stem Cells/cytology , Mesonephros/cytology , Animals , Cell Lineage , Female , Humans , Liver/cytology , Liver/embryology , Mice
10.
Blood ; 136(25): 2893-2904, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32614947

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro-generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.


Subject(s)
Antigens, Differentiation , Hematopoietic Stem Cells , Machine Learning , Pluripotent Stem Cells , RNA-Seq , Single-Cell Analysis , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Fetus/cytology , Fetus/metabolism , Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Liver/cytology , Liver/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
11.
Biophys J ; 118(4): 898-908, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31699333

ABSTRACT

Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1-a transporter cum sensor-provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.


Subject(s)
Arabidopsis , Nitrates , Anion Transport Proteins , Arabidopsis/metabolism , Nitrate Transporters , Nitrates/metabolism , Plant Proteins/metabolism
12.
Stem Cell Reports ; 12(5): 1056-1068, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30956115

ABSTRACT

Definitive hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region in both mice and humans. An ex vivo culture approach has enabled recapitulation and analysis of murine HSC development. Knowledge of early human HSC development is hampered by scarcity of tissue: analysis of both CFU-C and HSC development in the human embryo is limited. Here, we characterized the spatial distribution and temporal kinetics of CFU-C development within early human embryonic tissues. We then sought to adapt the murine ex vivo culture system to recapitulate human HSC development. We show robust expansion of CFU-Cs and maintenance, but no significant expansion, of human HSCs in culture. Furthermore, we demonstrate that HSCs emerge predominantly in the middle section of the dorsal aorta in our culture system. We conclude that there are important differences between early mouse and human hematopoiesis, which currently hinder the quest to recapitulate human HSC development ex vivo.


Subject(s)
Aorta/cytology , Embryo, Mammalian/cytology , Hematopoietic Stem Cells/cytology , Spatio-Temporal Analysis , Stem Cells/cytology , Animals , Cell Proliferation/physiology , Cells, Cultured , Colony-Forming Units Assay , Embryo, Mammalian/embryology , Gonads/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cell Transplantation/methods , Heterografts , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred NOD , Mice, Knockout , Mice, SCID
13.
iScience ; 2: 41-50, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-30428377

ABSTRACT

Plant adaptation in variable soil nitrate concentrations involves sophisticated signaling and transport systems that modulate a variety of physiological and developmental responses. However, we know very little about their molecular mechanisms. It has recently been reported that many of these responses are regulated by a transceptor NRT1.1, a transporter cum receptor of nitrate signaling. NRT1.1 displays dual-affinity modes of nitrate binding and establishes phosphorylated/non-phosphorylated states at the amino acid residue threonine 101 in response to fluctuating nitrate concentrations. Here we report that intrinsic structural asymmetries between the protomers of the homodimer NRT1.1 provide a functional basis for having dual-affinity modes of nitrate binding and play a pivotal role for the phosphorylation switch. Nitrate-triggered local conformational changes facilitate allosteric communications between the nitrate binding and the phosphorylation site in one protomer, but such communications are impeded in the other. Structural analysis therefore suggests the functional relevance of NRT1.1 interprotomer asymmetries.

14.
Stem Cell Reports ; 11(3): 784-794, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30208304

ABSTRACT

Hematopoietic stem cells (HSCs) develop in the embryonic aorta-gonad-mesonephros (AGM) region and subsequently relocate to fetal liver. Runx1 transcription factor is essential for HSC development, but is largely dispensable for adult HSCs. Here, we studied tamoxifen-inducible Runx1 inactivation in vivo. Induction at pre-liver stages (up to embryonic day 10.5) reduced erythromyeloid progenitor numbers, but surprisingly did not block the appearance of Runx1-null HSCs in liver. By contrast, ex vivo analysis showed an absolute Runx1 dependency of HSC development in the AGM region. We found that, contrary to current beliefs, significant Cre-inducing tamoxifen activity persists in mouse blood for at least 72 hr after injection. This deferred recombination can hit healthy HSCs, which escaped early Runx1 ablation and result in appearance of Runx1-null HSCs in liver. Such extended recombination activity in vivo is a potential source of misinterpretation, particularly in analysis of dynamic developmental processes during embryogenesis.


Subject(s)
Aorta/embryology , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/cytology , Liver/embryology , Mesonephros/embryology , Animals , Aorta/cytology , Core Binding Factor Alpha 2 Subunit/metabolism , Female , Gene Deletion , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Liver/cytology , Mesonephros/cytology , Mice, Inbred C57BL , Mice, Transgenic
15.
J Am Soc Nephrol ; 29(7): 1859-1873, 2018 07.
Article in English | MEDLINE | ID: mdl-29777019

ABSTRACT

Background Interstitial fibrosis is associated with chronic renal failure. In addition to fibroblasts, bone marrow-derived cells and tubular epithelial cells have the capacity to produce collagen. However, the amount of collagen produced by each of these cell types and the relevance of fibrosis to renal function are unclear.Methods We generated conditional cell type-specific collagen I knockout mice and used (reversible) unilateral ureteral obstruction and adenine-induced nephropathy to study renal fibrosis and function.Results In these mouse models, hematopoietic, bone marrow-derived cells contributed to 38%-50% of the overall deposition of collagen I in the kidney. The influence of fibrosis on renal function was dependent on the type of damage. In unilateral ureteral obstruction, collagen production by resident fibroblasts was essential to preserve renal function, whereas in the chronic model of adenine-induced nephropathy, collagen production was detrimental to renal function.Conclusions Our data show that hematopoietic cells are a major source of collagen and that antifibrotic therapies need to be carefully considered depending on the type of disease and the underlying cause of fibrosis.


Subject(s)
Acute Kidney Injury/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Kidney/pathology , Renal Insufficiency, Chronic/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Adenine , Animals , Bone Marrow Cells/metabolism , Cell Lineage , Epithelial Cells/metabolism , Female , Fibroblasts/metabolism , Fibrosis , Glomerular Filtration Rate , Hematopoiesis , Kidney/physiopathology , Kidney Tubules/cytology , Mice , Mice, Knockout , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/physiopathology , Ureteral Obstruction/complications
16.
J Exp Med ; 214(12): 3731-3751, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29093060

ABSTRACT

In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.


Subject(s)
Aorta/metabolism , Cell Differentiation , Gonads/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mesonephros/metabolism , Animals , Aorta/embryology , Bone Morphogenetic Proteins/metabolism , Carrier Proteins/metabolism , Cell Differentiation/genetics , Cluster Analysis , Feedback, Physiological , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gonads/embryology , Mesoderm/metabolism , Mesonephros/embryology , Mice, Inbred C57BL , Signal Transduction , Smad Proteins/metabolism , Stem Cell Niche/genetics , Time Factors
17.
Development ; 144(13): 2323-2337, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28676567

ABSTRACT

Haematopoietic stem cells (HSCs) emerge during embryogenesis and give rise to the adult haematopoietic system. Understanding how early haematopoietic development occurs is of fundamental importance for basic biology and medical sciences, but our knowledge is still limited compared with what we know of adult HSCs and their microenvironment. This is particularly true for human haematopoiesis, and is reflected in our current inability to recapitulate the development of HSCs from pluripotent stem cells in vitro In this Review, we discuss what is known of human haematopoietic development: the anatomical sites at which it occurs, the different temporal waves of haematopoiesis, the emergence of the first HSCs and the signalling landscape of the haematopoietic niche. We also discuss the extent to which in vitro differentiation of human pluripotent stem cells recapitulates bona fide human developmental haematopoiesis, and outline some future directions in the field.


Subject(s)
Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Hematopoietic Stem Cells/cytology , Hematopoiesis , Humans , Phenotype , Regeneration
18.
Stem Cell Reports ; 8(5): 1287-1298, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28494939

ABSTRACT

Clinical trials of stem cell therapy to treat ischemic heart disease primarily use heterogeneous stem cell populations. Small benefits occur via paracrine mechanisms that include stimulating angiogenesis, and increased understanding of these mechanisms would help to improve patient outcomes. Cardiosphere-derived-cells (CDCs) are an example of these heterogeneous stem cell populations, cultured from cardiac tissue. CDCs express endoglin, a co-receptor that binds specific transforming growth factor ß (TGFß) family ligands, including bone morphogenetic protein 9 (BMP9). In endothelial cells endoglin regulates angiogenic responses, and we therefore hypothesized that endoglin is required to promote the paracrine pro-angiogenic properties of CDCs. Cre/LoxP technology was used to genetically manipulate endoglin expression in CDCs, and we found that the pro-angiogenic properties of the CDC secretome are endoglin dependent both in vitro and in vivo. Importantly, BMP9 pre-treatment of endoglin-depleted CDCs restores their pro-angiogenic paracrine properties. As BMP9 signaling is normally required to maintain endoglin expression, we propose that media containing BMP9 could be critical for therapeutic CDC preparation.


Subject(s)
Endoglin/metabolism , Myocardium/cytology , Neovascularization, Physiologic , Paracrine Communication , Stem Cells/physiology , Animals , Cells, Cultured , Endoglin/genetics , Growth Differentiation Factor 2/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Mice , Mice, Inbred C57BL , Stem Cells/metabolism
19.
Stem Cell Reports ; 8(6): 1549-1562, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28479304

ABSTRACT

During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation.


Subject(s)
Aorta/metabolism , Hematopoietic Stem Cells/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian/metabolism , Genes, Reporter , Gonads/metabolism , Hematopoietic Stem Cells/cytology , Leukocyte Common Antigens/metabolism , Mesonephros/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Platelet Membrane Glycoprotein IIb/metabolism , Proto-Oncogene Proteins c-kit/metabolism
20.
R Soc Open Sci ; 4(1): 160768, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28280580

ABSTRACT

Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...