Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Int Conf Robot Autom ; 2022: 8097-8103, 2022 May.
Article in English | MEDLINE | ID: mdl-37181542

ABSTRACT

In order to provide therapy in a functional context, controls for wearable robotic orthoses need to be robust and intuitive. We have previously introduced an intuitive, user-driven, EMG-based method to operate a robotic hand orthosis, but the process of training a control that is robust to concept drift (changes in the input signal) places a substantial burden on the user. In this paper, we explore semi-supervised learning as a paradigm for controlling a powered hand orthosis for stroke subjects. To the best of our knowledge, this is the first use of semi-supervised learning for an orthotic application. Specifically, we propose a disagreement-based semi-supervision algorithm for handling intrasession concept drift based on multimodal ipsilateral sensing. We evaluate the performance of our algorithm on data collected from five stroke subjects. Our results show that the proposed algorithm helps the device adapt to intrasession drift using unlabeled data and reduces the training burden placed on the user. We also validate the feasibility of our proposed algorithm with a functional task; in these experiments, two subjects successfully completed multiple instances of a pick-and-handover task.

2.
IEEE Trans Neural Syst Rehabil Eng ; 28(10): 2265-2275, 2020 10.
Article in English | MEDLINE | ID: mdl-32886611

ABSTRACT

We studied the performance of a robotic orthosis designed to assist the paretic hand after stroke. It is wearable and fully user-controlled, serving two possible roles: as a therapeutic tool that facilitates device-mediated hand exercises to recover neuromuscular function or as an assistive device for use in everyday activities to aid functional use of the hand. We present the clinical outcomes of a pilot study designed as a feasibility test for these hypotheses. 11 chronic stroke (>2 years) patients with moderate muscle tone (Modified Ashworth Scale ≤ 2 in upper extremity) engaged in a month-long training protocol using the orthosis. Individuals were evaluated using standardized outcome measures, both with and without orthosis assistance. Fugl-Meyer post intervention scores without robotic assistance showed improvement focused specifically at the distal joints of the upper limb, suggesting the use of the orthosis as a rehabilitative device for the hand. Action Research Arm Test scores post intervention with robotic assistance showed that the device may serve an assistive role in grasping tasks. These results highlight the potential for wearable and user-driven robotic hand orthoses to extend the use and training of the affected upper limb after stroke.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Pilot Projects , Recovery of Function , Stroke/complications , Treatment Outcome , Upper Extremity
3.
IEEE Int Conf Rehabil Robot ; 2017: 1203-1210, 2017 07.
Article in English | MEDLINE | ID: mdl-28813985

ABSTRACT

Wearable orthoses can function both as assistive devices, which allow the user to live independently, and as rehabilitation devices, which allow the user to regain use of an impaired limb. To be fully wearable, such devices must have intuitive controls, and to improve quality of life, the device should enable the user to perform Activities of Daily Living. In this context, we explore the feasibility of using electromyography (EMG) signals to control a wearable exotendon device to enable pick and place tasks. We use an easy to don, commodity forearm EMG band with 8 sensors to create an EMG pattern classification control for an exotendon device. With this control, we are able to detect a user's intent to open, and can thus enable extension and pick and place tasks. In experiments with stroke survivors, we explore the accuracy of this control in both non-functional and functional tasks. Our results support the feasibility of developing wearable devices with intuitive controls which provide a functional context for rehabilitation.


Subject(s)
Electromyography , Hand Strength/physiology , Hand/physiopathology , Orthotic Devices , Stroke Rehabilitation , Adult , Aged , Aged, 80 and over , Electromyography/instrumentation , Electromyography/methods , Exoskeleton Device , Female , Humans , Male , Middle Aged , Pattern Recognition, Automated/methods , Prosthesis Design , Self-Help Devices , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...