Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645168

ABSTRACT

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they serve as reference genes (often called housekeeping genes) in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be applied to animals across the lifespan.

3.
Nat Aging ; 4(2): 261-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200273

ABSTRACT

Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.


Subject(s)
DNA Methylation , Labor, Obstetric , Pregnancy , Female , Humans , Mice , Animals , DNA Methylation/genetics , Epigenesis, Genetic , Aging/genetics , Epigenomics/methods
4.
bioRxiv ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37503069

ABSTRACT

Individuals, organs, tissues, and cells age in diverse ways throughout the lifespan. Epigenetic clocks attempt to quantify differential aging between individuals, but they typically summarize aging as a single measure, ignoring within-person heterogeneity. Our aim was to develop novel systems-based methylation clocks that, when assessed in blood, capture aging in distinct physiological systems. We combined supervised and unsupervised machine learning methods to link DNA methylation, system-specific clinical chemistry and functional measures, and mortality risk. This yielded a panel of 11 system-specific scores- Heart, Lung, Kidney, Liver, Brain, Immune, Inflammatory, Blood, Musculoskeletal, Hormone, and Metabolic. Each system score predicted a wide variety of outcomes, aging phenotypes, and conditions specific to the respective system, and often did so more strongly than existing epigenetic clocks that report single global measures. We also combined the system scores into a composite Systems Age clock that is predictive of aging across physiological systems in an unbiased manner. Finally, we showed that the system scores clustered individuals into unique aging subtypes that had different patterns of age-related disease and decline. Overall, our biological systems based epigenetic framework captures aging in multiple physiological systems using a single blood draw and assay and may inform the development of more personalized clinical approaches for improving age-related quality of life.

5.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638792

ABSTRACT

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Subject(s)
Aging , Epigenesis, Genetic , Animals , Aging/genetics , DNA Methylation , Epigenome , Mammals/genetics , Nucleoproteins , Saccharomyces cerevisiae/genetics
6.
Aging Cell ; 21(2): e13553, 2022 02.
Article in English | MEDLINE | ID: mdl-35104377

ABSTRACT

Aging is associated with dramatic changes to DNA methylation (DNAm), although the causes and consequences of such alterations are unknown. Our ability to experimentally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability to study and manipulate these changes using in vitro models. However, it remains unclear whether the changes elicited by cells in culture can serve as a model of what is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced representation bisulfite sequencing. By developing a measure that tracked cellular aging in vitro, we tested whether it tracked physiological aging in various mouse tissues and whether anti-aging interventions modulate this measure. Our measure, termed CultureAGE, was shown to strongly increase with age when examined in multiple tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the measure was not a marker of cellular senescence, suggesting that it reflects a distinct yet progressive cellular aging phenomena that can be induced in vitro. Furthermore, we demonstrated slower epigenetic aging in animals undergoing caloric restriction and a resetting of our measure in lung and kidney fibroblasts when re-programmed to iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG) factors as potentially important chromatin regulators in translational culture aging phenotypes. Overall, this study supports the concept that physiologically relevant aging changes can be induced in vitro and used to uncover mechanistic insights into epigenetic aging.


Subject(s)
Epigenesis, Genetic , Fibroblasts , Aging/genetics , Animals , DNA Methylation/genetics , Epigenomics , Mice
7.
Nat Commun ; 13(1): 355, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039495

ABSTRACT

The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species.


Subject(s)
Aging/genetics , Epigenesis, Genetic , Mole Rats/growth & development , Mole Rats/genetics , Aging/blood , Animals , Biological Clocks/genetics , CpG Islands/genetics , DNA Methylation/genetics , Demography , Gene Expression Regulation , Humans , Mice , Mole Rats/blood , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Telomerase/genetics , Telomerase/metabolism
8.
Nature ; 588(7836): 124-129, 2020 12.
Article in English | MEDLINE | ID: mdl-33268865

ABSTRACT

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Subject(s)
Aging/genetics , Cellular Reprogramming/genetics , DNA Methylation , Epigenesis, Genetic , Eye , Nerve Regeneration/genetics , Vision, Ocular/genetics , Vision, Ocular/physiology , Aging/physiology , Animals , Axons/physiology , Cell Line, Tumor , Cell Survival , DNA-Binding Proteins/genetics , Dependovirus/genetics , Dioxygenases , Disease Models, Animal , Eye/cytology , Eye/innervation , Eye/pathology , Female , Genetic Vectors/genetics , Glaucoma/genetics , Glaucoma/pathology , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Octamer Transcription Factor-3/genetics , Optic Nerve Injuries/genetics , Proto-Oncogene Proteins/genetics , Retinal Ganglion Cells/cytology , SOXB1 Transcription Factors/genetics , Transcriptome/genetics
9.
Elife ; 92020 11 12.
Article in English | MEDLINE | ID: mdl-33179594

ABSTRACT

Robust biomarkers of aging have been developed from DNA methylation in humans and more recently, in mice. This study aimed to generate a novel epigenetic clock in rats-a model with unique physical, physiological, and biochemical advantages-by incorporating behavioral data, unsupervised machine learning, and network analysis to identify epigenetic signals that not only track with age, but also relates to phenotypic aging. Reduced representation bisulfite sequencing (RRBS) data was used to train an epigenetic age (DNAmAge) measure in Fischer 344 CDF (F344) rats. This measure correlated with age at (r = 0.93) in an independent sample, and related to physical functioning (p=5.9e-3), after adjusting for age and cell counts. DNAmAge was also found to correlate with age in male C57BL/6 mice (r = 0.79), and was decreased in response to caloric restriction. Our signatures driven by CpGs in intergenic regions that showed substantial overlap with H3K9me3, H3K27me3, and E2F1 transcriptional factor binding.


Subject(s)
Aging/metabolism , Biological Clocks/physiology , Epigenesis, Genetic/physiology , Heterochromatin/metabolism , Aging/genetics , Aging/physiology , Animals , Biological Clocks/genetics , Biomarkers , DNA Methylation/genetics , DNA Methylation/physiology , Male , Mice, Inbred C57BL , Phenotype , Rats , Rats, Inbred F344 , Unsupervised Machine Learning
10.
Cell Metab ; 29(4): 871-885.e5, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30853213

ABSTRACT

Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.


Subject(s)
Inflammation/metabolism , RNA-Binding Proteins/metabolism , Sirtuins/metabolism , Age Factors , Animals , Dideoxynucleotides/administration & dosage , Dideoxynucleotides/pharmacology , Female , Male , Mice , Mice, Inbred Strains , Mice, Knockout , RNA-Binding Proteins/antagonists & inhibitors , Sirtuins/deficiency , Stavudine/administration & dosage , Stavudine/pharmacology , Thymine Nucleotides/administration & dosage , Thymine Nucleotides/pharmacology , Zidovudine/administration & dosage , Zidovudine/analogs & derivatives , Zidovudine/pharmacology
11.
Elife ; 72018 11 14.
Article in English | MEDLINE | ID: mdl-30427307

ABSTRACT

Age predictors based on DNA methylation levels at a small set of CpG sites, DNAm clocks, have been developed for humans and extended to several other species. Three currently available versions of mouse DNAm clocks were either created for individual tissues or tuned toward young ages. Here, we constructed a robust multi-tissue age predictor based on 435 CpG sites, which covers the entire mouse lifespan and remains unbiased with respect to any particular age group. It can successfully detect the effects of certain lifespan-modulating interventions on DNAm age as well as the rejuvenation effect related to the transition from fibroblasts to iPSCs. We have carried out comparative analyses of available mouse DNAm clocks, which revealed their broad applicability, but also certain limitations to the use of tissue-specific and multi-tissue age predictors. Together, these tools should help address diverse questions in aging research.


Subject(s)
DNA Methylation , DNA/genetics , Epigenesis, Genetic , Longevity/genetics , Age Factors , Animals , CpG Islands , DNA/metabolism , Datasets as Topic , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Hippocampus/chemistry , Hippocampus/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Male , Mice , Mice, Inbred Strains , Mice, Transgenic , Myocardium/chemistry , Myocardium/metabolism , Organ Specificity , Rejuvenation/physiology
12.
Nature ; 533(7603): 397-401, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27193686

ABSTRACT

Fitness landscapes depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence or in different sequences. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here we visualize an extensive region of the local fitness landscape of the green fluorescent protein from Aequorea victoria (avGFP) by measuring the native function (fluorescence) of tens of thousands of derivative genotypes of avGFP. We show that the fitness landscape of avGFP is narrow, with 3/4 of the derivatives with a single mutation showing reduced fluorescence and half of the derivatives with four mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations and mostly occurred through the cumulative effect of slightly deleterious mutations causing a threshold-like decrease in protein stability and a concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for several fields including molecular evolution, population genetics and protein design.


Subject(s)
Genetic Fitness , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Animals , Epistasis, Genetic , Evolution, Molecular , Fluorescence , Genetic Association Studies , Genotype , Hydrozoa/chemistry , Hydrozoa/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation/genetics , Phenotype
13.
PLoS One ; 10(5): e0125888, 2015.
Article in English | MEDLINE | ID: mdl-25962149

ABSTRACT

The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.


Subject(s)
Gene Transfer, Horizontal , Geobacter/genetics , Geobacter/metabolism , Methacrylates/metabolism , Oxidation-Reduction , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Evolution , Gene Order , Genome, Bacterial , Geobacter/classification , Molecular Sequence Data , Operon , Phylogeny
14.
PLoS One ; 6(4): e17716, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21526114

ABSTRACT

Recent discovery of the Large-billed Reed Warbler (Acrocephalus orinus) in museums and in the wild significantly expanded our knowledge of its morphological traits and genetic variability, and revealed new data on geographical distribution of the breeding grounds, migration routes and wintering locations of this species. It is now certain that A. orinus is breeding in Central Asia; however, the precise area of distribution remains unclear. The difficulty in the further study of this species lies in the small number of known specimens, with only 13 currently available in museums, and in the relative uncertainty of the breeding area and habitat of this species. Following morphological and genetic analyses from Svensson, et al, we describe 14 new A. orinus specimens from collections of Zoological Museums of the former USSR from the territory of Central Asian states. All of these specimens were erroneously labeled as Blyth's Reed Warbler (A. dumetorum), which is thought to be a breeding species in these areas. The 14 new A. orinus specimens were collected during breeding season while most of the 85 A. dumetorum specimens from the same area were collected during the migration period. Our data indicate that the Central Asian territory previously attributed as breeding grounds of A. dumetorum is likely to constitute the breeding territory of A. orinus. This rare case of a re-description of the breeding territory of a lost species emphasizes the importance of maintenance of museum collections around the world. If the present data on the breeding grounds of A. orinus are confirmed with field observations and collections, the literature on the biology of A. dumetorum from the southern part of its range may have to be reconsidered.


Subject(s)
Songbirds/anatomy & histology , Songbirds/genetics , Animals , Asia , Biometry , Breeding , Geography , Molecular Sequence Data , Phylogeny , Seasons , Sequence Analysis, DNA , Specimen Handling , USSR
15.
Nature ; 464(7286): 279-82, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20182427

ABSTRACT

A long-standing controversy in evolutionary biology is whether or not evolving lineages can cross valleys on the fitness landscape that correspond to low-fitness genotypes, which can eventually enable them to reach isolated fitness peaks. Here we study the fitness landscapes traversed by switches between different AU and GC Watson-Crick nucleotide pairs at complementary sites of mitochondrial transfer RNA stem regions in 83 mammalian species. We find that such Watson-Crick switches occur 30-40 times more slowly than pairs of neutral substitutions, and that alleles corresponding to GU and AC non-Watson-Crick intermediate states segregate within human populations at low frequencies, similar to those of non-synonymous alleles. Substitutions leading to a Watson-Crick switch are strongly correlated, especially in mitochondrial tRNAs encoded on the GT-nucleotide-rich strand of the mitochondrial genome. Using these data we estimate that a typical Watson-Crick switch involves crossing a fitness valley of a depth of about 10(-3) or even about 10(-2), with AC intermediates being slightly more deleterious than GU intermediates. This compensatory evolution must proceed through rare intermediate variants that never reach fixation. The ubiquitous nature of compensatory evolution in mammalian mitochondrial tRNAs and other molecules implies that simultaneous fixation of two alleles that are individually deleterious may be a common phenomenon at the molecular level.


Subject(s)
Evolution, Molecular , Mammals/physiology , RNA, Transfer/genetics , RNA/genetics , Animals , Humans , Mammals/genetics , Mutation/genetics , Polymorphism, Genetic , RNA, Mitochondrial
16.
Biochim Biophys Acta ; 1783(7): 1350-3, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18319066

ABSTRACT

The existence of cell death program in unicellular organisms has been reported for a number of species. Nevertheless, the question why the ability to commit suicide has been maintained throughout evolution is far from being solved. While it is believed that altruistic death of individual yeast cells could be beneficial for the population, it is generally not known (i) what is wrong with the individuals destined for elimination, (ii) what is the critical value of the parameter that makes a cell unfit and (iii) how the cell monitors this parameter. Studies performed on yeast Saccharomyces cerevisiae allow us to hypothesize on ways of possible solutions of these problems. Here we argue that (a) the main parameter for life-or-death decision measured by the cell is the degree of damage to the genetic material, (b) its critical value is dictated by quorum sensing machinery, and (c) it is measured by monitoring delays in cell division.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology , DNA Damage , Saccharomyces cerevisiae/physiology , Ammonia/metabolism , Caspases/metabolism , Cell Division , Quorum Sensing , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...