Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Anal Bioanal Chem ; 416(7): 1613-1621, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38285228

ABSTRACT

Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2-4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s-1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements.

2.
Anal Chem ; 96(8): 3276-3283, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38294348

ABSTRACT

We report an analytical methodology for the quantification of sulfur in biological molecules via a species-unspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma-mass spectrometry (online ID CE/ICP-MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3-2.6 and 4.1-8.4 mg L-1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5-100 mg L-1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor)─which was developed by us in a previous work─was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis.


Subject(s)
Proteins , Sulfur , Animals , Cattle , Humans , Mass Spectrometry/methods , Sulfur/analysis , Proteins/analysis , Isotopes , Albumins , Electrophoresis, Capillary
3.
Anal Chem ; 95(35): 13322-13329, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37566513

ABSTRACT

An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell-inductively coupled plasma-time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment.


Subject(s)
Metals , Humans , Mass Spectrometry/methods , Spectrum Analysis
4.
Nanoscale ; 15(26): 11268-11279, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37345980

ABSTRACT

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multi-element determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e.194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics.

5.
Sci Total Environ ; 885: 163753, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37121317

ABSTRACT

In this study, we compare analytical methods for PFAS determination-target analysis, non-target screening (NTS), direct total oxidizable precursor assay (dTOPA) and extractable organically bound fluorine (EOF). Therefore, suspended particulate matter (SPM) samples from German rivers at different locations in time series from 2005 to 2020 were analyzed to investigate temporal and spatially resolved trends. In this study 3 PFAS mass balances approaches were utilized: (i) PFAA target vs. PFAS dTOPA, (ii) PFAS target vs. EOF and (iii) PFAS target vs. PFAS dTOPA vs. organofluorines NTS vs. EOF. Mass balance approach (i) revealed high proportions of precursor substances in SPM samples. For the time resolved analysis an increase from 94% (2005) to 97% in 2019 was observable. Also for the spatial resolved analysis precursor proportions were high with >84% at all sampling sites. Mass balance approach (ii) showed that the unidentified EOF (uEOF) fraction increased over time from 82% (2005) to 99% (2019). Furthermore, along the river courses the uEOF increased. In the combined mass balance approach (iii) using 4 different analytical approaches EOF fractions were further unraveled. The EOF pattern was fully explainable at the sampling sites at Saar and Elbe rivers. For the time resolved analysis, an increased proportion of the EOF was now explainable. However, still 27% of the EOF for the time resolved analysis and 25% of the EOF for the spatial resolved analysis remained unknown. Therefore, in a complementary approach, both the EOF and dTOPA reveal unknown gaps in the PFAS mass balance and are valuable contributions to PFAS risk assessment. Further research is needed to identify organofluorines summarized in the EOF parameter.

6.
Sci Total Environ ; 871: 161979, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36739030

ABSTRACT

Climate change may increase the overall susceptibility of peatlands to fire. Smoldering fires in peatlands can cause substantial emissions of greenhouse gases. It is, however, less clear how smoldering affects the soil pore water quality. In this study, soil samples were collected from agricultural fen and disturbed bog study sites in Germany and Lithuania to quantify the effect of peat burning on pore water composition. The samples were air dried and smoldered under ignition temperature (approximately 200 °C) with different durations (0, 2, 5, and 10 h). Pore water samples were extracted from the soil to determine dissolved organic carbon (DOC) concentrations, dissolved organic matter (DOM) fractions, fluoride, extractable organically bound fluorine (EOF), and sulfate concentrations. The results showed that soil smoldering changes the peat pore water chemistry and that changes differ between fens and bogs. The smoldering duration is likewise influential. For fen grasslands, 2 and 5 h of smoldering of peat caused a >10-fold increase in DOC (up to 1600 mg L-1) and EOF concentrations. The fluoride (up to 60 mg L-1) and sulfate concentrations substantially exceeded WHO drinking water guidelines. In contrast, the temperature treatment decreased the DOC concentrations of samples from raised bogs by 90 %. The fluoride concentrations decreased, but sulfate concentrations increased after smoldering of the bog samples. DOC, fluoride, and sulfate concentrations of bogs varied significantly between the smoldering duration treatments. For all peat samples, the extracted DOM was dominated by humic-like substances before smoldering, but the fraction of low molecular weight substances increased after smoldering combustion. In conclusion, smoldering alters the biogeochemical processes in both peatland types and possibly impair the water quality of adjacent water resources especially in fen peat landscapes.

7.
Anal Bioanal Chem ; 415(6): 1195-1204, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36633619

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are emerging organic pollutants and can occur in surface and groundwater. To identify the degree of pollution in surface water with PFAS, often targeted HPLC-ESI-MS/MS has been employed in which commonly 30-40 compounds are analyzed. However, other PFAS and organofluorines remain undetected. We sampled surface water of the river Spree and the Teltow Canal in Berlin, Germany, which are affected by the effluent discharge of wastewater treatment plants. Here, we employed high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) for measuring extractable organofluorines (EOF) and compared in a mass balance approach the total fluorine to the identified and quantified PFAS from the targeted analysis. The analysis highlights that the EOF are in the range expected for an urban river system (Winchell et al. in Sci Total Environ 774, 2021). However, downstream of an effluent discharge, the EOF increased by one order of magnitude, e.g., 40.3 to 574 ng F L-1, along the Teltow Canal. From our target analytes, mostly short-chained perfluorinated carboxylic acids and sulfonates occur in the water, which however makes up less than 10% of the EOF. The increase in EOF in the Teltow Canal correlates well with the increase of perfluorohexanoic acid (PFHxA), indicating that PFHxA is characteristic for the discharged EOF but not responsible for the increase. Hence, it points to PFHxA precursor discharge. The study highlights that EOF screening using HR-CS-GFMAS is necessary to identify the full scale of pollution with regard to PFAS and other organofluorines such as pharmaceutical compounds from the effluent of WWTPs.

8.
Metallomics ; 14(11)2022 11 09.
Article in English | MEDLINE | ID: mdl-36260360

ABSTRACT

The development of the microbiologically influenced corrosion (MIC)-specific inductively coupled plasma-time of flight-mass spectrometry (ICP-ToF-MS) analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis. For this, a MIC-specific staining procedure was developed, which ensures the analysis of intact cells. It allows the analysis of archaea at a single cell level, which is extremely scarce compared to other well-characterized organisms. The detection method revealed elemental selectivity for the corrosive methanogenic strain Methanobacterium-affiliated IM1. Hence, the possible uptake of individual elements from different steel samples was investigated and results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to uptake chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The methods developed and information obtained will be used in the future to elucidate underlying mechanisms, compliment well-developed methods, such as SEM-EDS, and develop novel material protection concepts.


Subject(s)
Biofilms , Steel , Corrosion , Steel/chemistry , Titanium
10.
Chemosphere ; 295: 133922, 2022 May.
Article in English | MEDLINE | ID: mdl-35143867

ABSTRACT

Here, we describe an optimized fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) in soils utilizing high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). To omit the bias of the solid phase extraction (SPE) step commonly used during the analysis of extractable organically bound fluorine (EOF) we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol without any additional SPE. Four extraction steps were representative to determine a high proportion of the EOF (>80% of eight extractions). Comparison of the optimized method with and without an additional SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. Differences of up to 94% were observed which were not explainable by coextracted inorganic fluoride. Therefore, not only a more accurate but also a more economic as well as ecologic method (bypassing of unnecessary SPE) was developed. The procedural limit of quantification (LOQ) of the developed method was 10.30 µg/kg which was sufficient for quantifying EOF concentrations in all tested samples. For future PFAS monitoring and potential regulative decisions the herein presented optimized extraction method can offer a valuable contribution.


Subject(s)
Fluorocarbons , Tandem Mass Spectrometry , Fluorine , Fluorocarbons/analysis , Soil , Solid Phase Extraction
11.
Nanoscale ; 14(1): 86-98, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34897345

ABSTRACT

Highly transparent CeO2/polycarbonate surfaces were fabricated that prevent adhesion, proliferation, and the spread of bacteria. CeO2 nanoparticles with diameters of 10-15 nm and lengths of 100-200 nm for this application were prepared by oxidizing aqueous dispersions of Ce(OH)3 with H2O2 in the presence of nitrilotriacetic acid (NTA) as the capping agent. The surface-functionalized water-dispersible CeO2 nanorods showed high catalytic activity in the halogenation reactions, which makes them highly efficient functional mimics of haloperoxidases. These enzymes are used in nature to prevent the formation of biofilms through the halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). Bacteria-repellent CeO2/polycarbonate plates were prepared by dip-coating plasma-treated polycarbonate plates in aqueous CeO2 particle dispersions. The quasi-enzymatic activity of the CeO2 coating was demonstrated using phenol red enzyme assays. The monolayer coating of CeO2 nanorods (1.6 µg cm-2) and the bacteria repellent properties were demonstrated by atomic force microscopy, biofilm assays, and fluorescence measurements. The engineered polymer surfaces have the ability to repel biofilms as green antimicrobials on plastics, where H2O2 is present in humid environments such as automotive parts, greenhouses, or plastic containers for rainwater.


Subject(s)
Hydrogen Peroxide , Pseudomonas aeruginosa , Biofilms , Plastics , Polycarboxylate Cement
13.
Anal Bioanal Chem ; 413(21): 5279-5289, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302182

ABSTRACT

A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 µg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 µg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant.

15.
Dalton Trans ; 50(19): 6528-6538, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34002749

ABSTRACT

Solid state reactions are slow because the diffusion of atoms or ions through the reactant, intermediate and crystalline product phases is the rate-limiting step. This requires days or even weeks of high temperature treatment, and consumption of large amounts of energy. We employed spark-plasma sintering, an engineering technique that is used for high-speed consolidation of powders with a pulsed electric current passing through the sample to carry out the fluorination of niobium oxide in minute intervals. The approach saves time and large amounts of waste energy. Moreover, it allows the preparation of fluorinated niobium oxides on a gram scale using poly(tetrafluoroethylene) (®Teflon) scrap and without toxic chemicals. The synthesis can be upscaled easily to the kg range with appropriate sintering equipment. Finally, NbO2F and Nb3O7F prepared by spark plasma sintering show significant photoelectrocatalytic (PEC) oxygen evolution from water in terms of photocurrent density and incident photon-to-current efficiency (% IPCE), whereas NbO2F and Nb3O7F prepared by conventional high temperature chemistry show little to no PEC response. Our study is a proof of concept for the quick, clean and energy saving production of valuable photocatalysts from plastic waste.

16.
Adv Mater ; 33(20): e2007434, 2021 May.
Article in English | MEDLINE | ID: mdl-33837999

ABSTRACT

A general method to carry out the fluorination of metal oxides with poly(tetrafluoroethylene) (PTFE, Teflon) waste by spark plasma sintering (SPS) on a minute scale with Teflon is reported. The potential of this new approach is highlighted by the following results. i) The tantalum oxyfluorides Ta3 O7 F and TaO2 F are obtained from plastic scrap without using toxic or caustic chemicals for fluorination. ii) Short reaction times (minutes rather than days) reduce the process time the energy costs by almost three orders of magnitude. iii) The oxyfluorides Ta3 O7 F and TaO2 F are produced in gram amounts of nanoparticles. Their synthesis can be upscaled to the kg range with industrial sintering equipment. iv) SPS processing changes the catalytic properties: while conventionally prepared Ta3 O7 F and TaO2 F show little catalytic activity, SPS-prepared Ta3 O7 F and TaO2 F exhibit high activity for photocatalytic oxygen evolution, reaching photoconversion efficiencies up to 24.7% and applied bias to photoconversion values of 0.86%. This study shows that the materials properties are dictated by the processing which poses new challenges to understand and predict the underlying factors.

17.
Chemosphere ; 263: 128040, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297056

ABSTRACT

The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6-96 h of exposure to 5-90 µm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h-7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 µm, 6.4-100,000 particles mL-1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics.


Subject(s)
Lymnaea , Water Pollutants, Chemical , Animals , Copper/toxicity , Eating , Fresh Water , Microplastics , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Anal Bioanal Chem ; 413(1): 103-115, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33164152

ABSTRACT

In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples from river Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 µg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14-0.81% of TF (determined using CIC) and EOF 0.04-0.28% of TF (determined using HR-CS-GFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. Graphical abstract.

19.
Rapid Commun Mass Spectrom ; 35(2): e8953, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32970910

ABSTRACT

RATIONALE: (Eco-)toxicological effects are mostly derived empirically and are not correlated with metal uptake. Furthermore, if the metal content is determined, mostly bulk analysis of the whole organism population is conducted; thus, biological variability is completely disregarded, and this may lead to misleading results. To overcome this issue, we compared two different solid sampling techniques for the analysis of single organisms. METHODS: In this study, complementary electrothermal vaporization/inductively coupled plasma mass spectrometry (ETV/ICP-MS) ⇔ laser ablation/inductively coupled plasma mass spectrometry (LA/ICP-MS)-based methods for the analysis of individual organisms were developed and the results obtained were compared with the concentrations obtained after digestion and measured using ICP-MS. For this purpose, a common (eco-)toxicological test organism, the mud shrimp Corophium volutator, was selected. As proof-of-concept application, these organisms were incubated with environmentally relevant metals from galvanic anodes, which are often used for protection against metal corrosion in, for example, offshore wind farms. RESULTS: The bulk analysis revealed that large quantities of the incubated elements were detectable. Using the ETV/ICP-MS method, we could identify a high biovariability within the population of organisms tested. Using the LA/ICP-MS method, it could be determined that the large quantities of the elements detected were due to adsorption of the metals and not due to uptake, which correlates well with the absence of (eco-)toxicological effects. CONCLUSIONS: The results obtained imply the efficiency of complementary methods to explain the absence or presence of (eco-)toxicological effects. In particular, methods that allow for single-organism analysis or provide even a spatial resolution support the interpretation of ecotoxicological findings.


Subject(s)
Amphipoda/metabolism , Mass Spectrometry/methods , Metals, Heavy/analysis , Amphipoda/chemistry , Animals , Ecotoxicology/methods , Electrochemical Techniques , Metals, Heavy/pharmacokinetics , Temperature
20.
Anal Bioanal Chem ; 412(23): 5637-5646, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32613566

ABSTRACT

In this work, a method for species-specific isotopic analysis of sulfur via capillary electrophoresis hyphenated on-line with multicollector ICP-MS (CE/MC-ICP-MS) was developed. Correction for the mass bias caused by instrumental mass discrimination was realized via external correction with multiple-injection sample-standard bracketing. By comparing the isotope ratio measurement results obtained using the newly developed on-line CE/MC-ICP-MS method with those obtained via traditional MC-ICP-MS measurement after analyte/matrix separation by anion exchange chromatography for isotopic reference materials and an in-house bracketing standard, the most suitable data evaluation method could be identified. The repeatability for the sulfate-δ34S value (calculated from 18 measurements of a standard conducted over seven measurement sessions) was 0.57‰ (2SD) and thereby only twice that obtained with off-line measurements (0.30‰, n = 68). As a proof of concept for analysis of samples with a real matrix, the determination of the sulfur isotopic composition of naturally present sulfate was performed for different river systems. The CE/MC-ICP-MS results thus obtained agreed with the corresponding off-line MC-ICP-MS results within the 2SD ranges, and the repeatability of consecutive δ34S measurements (n = 3) was between 0.3‰ and 1.3‰ (2SD). Finally, the isotopic analysis of two different S-species in a river water sample spiked with 2-pyridinesulfonic acid (PSA) was also accomplished. Graphical abstract The CE/MC-ICP-MS method developed allows for species-specific S isotopic analysis in samples containing multiple species. Mass bias is corrected for by multiple-injection sample-standard bracketing, while the repeatability (2SD) of the resulting 34δ-values is <1‰.

SELECTION OF CITATIONS
SEARCH DETAIL
...