Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1709, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731718

ABSTRACT

Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


Subject(s)
Electron Transport/physiology , Gram-Positive Bacteria/metabolism , Bacillaceae/cytology , Bacillaceae/growth & development , Bacillaceae/metabolism , Bioelectric Energy Sources/microbiology , Electric Conductivity , Electrodes/microbiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/ultrastructure , Gram-Positive Bacteria/cytology , Gram-Positive Bacteria/growth & development , Graphite , Microscopy, Atomic Force , Nanowires
2.
Sci Rep ; 10(1): 19798, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188289

ABSTRACT

Filamentous cable bacteria exhibit long-range electron transport over centimetre-scale distances, which takes place in a parallel fibre structure with high electrical conductivity. Still, the underlying electron transport mechanism remains undisclosed. Here we determine the intrinsic electrical properties of the conductive fibres in cable bacteria from a material science perspective. Impedance spectroscopy provides an equivalent electrical circuit model, which demonstrates that dry cable bacteria filaments function as resistive biological wires. Temperature-dependent electrical characterization reveals that the conductivity can be described with an Arrhenius-type relation over a broad temperature range (- 195 °C to + 50 °C), demonstrating that charge transport is thermally activated with a low activation energy of 40-50 meV. Furthermore, when cable bacterium filaments are utilized as the channel in a field-effect transistor, they show n-type transport suggesting that electrons are the charge carriers. Electron mobility values are ~ 0.1 cm2/Vs at room temperature and display a similar Arrhenius temperature dependence as conductivity. Overall, our results demonstrate that the intrinsic electrical properties of the conductive fibres in cable bacteria are comparable to synthetic organic semiconductor materials, and so they offer promising perspectives for both fundamental studies of biological electron transport as well as applications in microbial electrochemical technologies and bioelectronics.


Subject(s)
Electron Transport/physiology , Electric Conductivity , Semiconductors , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...