Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674708

ABSTRACT

Ageing changes the impact of nutrition, whereby inflammation has been suggested to play a role in age-related disabilities such as diabetes and cardiovascular disease. The aim of this study was to investigate differences in postprandial bile-acid response and its effect on energy metabolism between young and elderly people. Nine young, healthy men and nine elderly, healthy men underwent a liquid mixed-meal test. Postprandial bile-acid levels, insulin, glucose, GLP-1, C4, FGF19 and lipids were measured. Appetite, body composition, energy expenditure and gut microbiome were also measured. The elderly population showed lower glycine conjugated CDCA and UDCA levels and higher abundances of Ruminiclostridium, Marvinbryantia and Catenibacterium, but lower food intake, decreased fat free mass and increased cholesterol levels. Aging is associated with changes in postprandial bile-acid composition and microbiome, diminished hunger and changes in body composition and lipid levels. Further studies are needed to determine if these changes may contribute to malnutrition and sarcopenia in elderly.

2.
Nutrients ; 15(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960277

ABSTRACT

Cerebrotendinous xanthomatosis (CTX) is a rare inherited disease characterized by sterol 27-hydroxylase (CYP27A1) deficiency and, thus, a lack of bile acid synthesis with a marked accumulation of 7α-hydroxylated bile acid precursors. In addition to their renowned lipid-emulgating role, bile acids have been shown to stimulate secretion of the glucose-lowering and satiety-promoting gut hormone glucagon-like peptide 1 (GLP-1). In this paper, we examined postprandial bile acid, glucose, insulin, GLP-1 and fibroblast growth factor 19 (FGF19) plasma profiles in patients with CTX and matched healthy controls. Seven patients and seven age, gender and body mass index matched controls were included and subjected to a 4 h mixed meal test with regular blood sampling. CTX patients withdrew from chenodeoxycholic acid (CDCA) and statin therapy three weeks prior to the test. Postprandial levels of total bile acids were significantly lower in CTX patients and consisted of residual CDCA with low amounts of ursodeoxycholic acid (UDCA). The postprandial plasma glucose peak concentration occurred later in CTX patients compared to controls, and patients' insulin levels remained elevated for a longer time. Postprandial GLP-1 levels were slightly higher in CTX subjects whereas postprandial FGF19 levels were lower in CTX subjects. This novel characterization of CTX patients reveals very low circulating bile acid levels and FGF19 levels, aberrant postprandial glucose and insulin profiles, and elevated postprandial GLP-1 responses.


Subject(s)
Xanthomatosis, Cerebrotendinous , Humans , Xanthomatosis, Cerebrotendinous/metabolism , Bile Acids and Salts , Chenodeoxycholic Acid , Insulin , Glucagon-Like Peptide 1 , Cytochrome P-450 Enzyme System , Glucose
3.
Am J Physiol Endocrinol Metab ; 322(2): E132-E140, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34957857

ABSTRACT

Duodenal mucosal resurfacing (DMR) is a new endoscopic ablation technique aimed at improving glycemia and metabolic control in patients with type 2 diabetes mellitus (T2DM). DMR appears to improve insulin resistance, which is the root cause of T2DM, but its mechanism of action is largely unknown. Bile acids function as intestinal signaling molecules in glucose and energy metabolism via the activation of farnesoid X receptor and secondary signaling [e.g., via fibroblast growth factor 19 (FGF19)], and are linked to metabolic health. We investigated the effect of DMR and glucagon-like peptide-1 (GLP-1) on postprandial bile acid responses in 16 patients with insulin-dependent T2DM, using mixed meal tests performed at the baseline and 6 mo after the DMR procedure. The combination treatment allowed discontinuation of insulin treatment in 11/16 (69%) of patients while improving glycemic and metabolic health. We found increased postprandial unconjugated bile acid responses (all P < 0.05), an overall increased secondary bile acid response (P = 0.036) and a higher 12α-hydroxylated:non-12α-hydroxylated ratio (P < 0.001). Total bile acid concentrations were unaffected by the intervention. Postprandial FGF19 and 7-α-hydroxy-4-cholesten-3-one (C4) concentrations decreased postintervention (both P < 0.01). Our study demonstrates that DMR with GLP-1 modulates the postprandial bile acid response. The alterations in postprandial bile acid responses may be the result of changes in the microbiome, ileal bile acid uptake and improved insulin sensitivity. Controlled studies are needed to elucidate the mechanism linking the combination treatment to metabolic health and bile acids.NEW & NOTEWORTHY Glycemic and metabolic improvements are seen in patients with type 2 diabetes after replacing their insulin therapy with DMR and GLP-1. These changes are accompanied by changes in postprandial bile acid concentrations: increased unconjugated and secondary bile acids.


Subject(s)
Bile Acids and Salts/blood , Bile Acids and Salts/chemistry , Catheter Ablation/methods , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/surgery , Duodenoscopy/methods , Endoscopic Mucosal Resection/methods , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Liraglutide/administration & dosage , Postprandial Period , Adult , Aged , Diabetes Mellitus, Type 2/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Treatment Outcome
4.
Clin Nutr ; 40(3): 1013-1021, 2021 03.
Article in English | MEDLINE | ID: mdl-32747206

ABSTRACT

BACKGROUND & AIMS: To investigate the acute effects of intravenous vs enteral meal administration on circulating bile acid and gut hormone responses. METHODS: In a randomized crossover design, we compared the effects of duodenal (via a nasoduodenal tube) vs parenteral (intravenous) administration over 180 min of identical mixed meals on circulating bile acid and gut hormone concentrations in eight healthy lean men. We analysed the bile acid and gut hormone responses in two periods: the intraprandial period from time point (T) 0 until T180 during meal administration and the postprandial period from T180 until T360, after discontinuation of meal administration. RESULTS: Intravenous meal administration decreased the intraprandial (AUC (µmol/L∗min) duodenal 1469 ± 284 vs intravenous 240 ± 39, p < 0.01) and postprandial bile acid response (985 ± 240 vs 223 ± 5, p < 0.05) and was accompanied by decreased gut hormone responses including glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, glucagon-like peptide 2 and fibroblast growth factor 19. Furthermore, intravenous meal administration elicited greater glucose concentrations, but similar insulin concentrations compared to enteral administration. CONCLUSIONS: Compared to enteral administration, parenteral nutrition results in lower postprandial bile acid and gut hormone responses in healthy lean men. This was accompanied by higher glucose concentrations in the face of similar insulin concentrations exposing a clear incretin effect of enteral mixed meal administration. The alterations in bile acid homeostasis were apparent after only one intravenous meal.


Subject(s)
Bile Acids and Salts/blood , Enteral Nutrition/adverse effects , Gastrointestinal Hormones/blood , Meals/physiology , Parenteral Nutrition/adverse effects , Adult , Blood Glucose/metabolism , Cross-Over Studies , Duodenum , Enteral Nutrition/methods , Healthy Volunteers , Humans , Insulin/blood , Male , Parenteral Nutrition/methods , Postprandial Period
5.
Front Physiol ; 12: 771944, 2021.
Article in English | MEDLINE | ID: mdl-35087416

ABSTRACT

Background: Generally, food intake occurs in a three-meal per 24 h fashion with in-between meal snacking. As such, most humans spend more than ∼ 12-16 h per day in the postprandial state. It may be reasoned from an evolutionary point of view, that the human body is physiologically habituated to less frequent meals. Metabolic flexibility (i.e., reciprocal changes in carbohydrate and fatty acid oxidation) is a characteristic of metabolic health and is reduced by semi-continuous feeding. The effects of time-restricted feeding (TRF) on metabolic parameters and physical performance in humans are equivocal. Methods: To investigate the effect of TRF on metabolism and physical performance in free-living healthy lean individuals, we compared the effects of eucaloric feeding provided by a single meal (22/2) vs. three meals per day in a randomized crossover study. We included 13 participants of which 11 (5 males/6 females) completed the study: age 31.0 ± 1.7 years, BMI 24.0 ± 0.6 kg/m2 and fat mass (%) 24.0 ± 0.6 (mean ± SEM). Participants consumed all the calories needed for a stable weight in either three meals (breakfast, lunch and dinner) or one meal per day between 17:00 and 19:00 for 11 days per study period. Results: Eucaloric meal reduction to a single meal per day lowered total body mass (3 meals/day -0.5 ± 0.3 vs. 1 meal/day -1.4 ± 0.3 kg, p = 0.03), fat mass (3 meals/day -0.1 ± 0.2 vs. 1 meal/day -0.7 ± 0.2, p = 0.049) and increased exercise fatty acid oxidation (p < 0.001) without impairment of aerobic capacity or strength (p > 0.05). Furthermore, we found lower plasma glucose concentrations during the second half of the day during the one meal per day intervention (p < 0.05). Conclusion: A single meal per day in the evening lowers body weight and adapts metabolic flexibility during exercise via increased fat oxidation whereas physical performance was not affected.

6.
Physiol Rep ; 8(5): e14358, 2020 03.
Article in English | MEDLINE | ID: mdl-32170845

ABSTRACT

BACKGROUND: Bile acids are multifaceted metabolic compounds that signal to cholesterol, glucose, and lipid homeostasis via receptors like the Farnesoid X Receptor (FXR) and transmembrane Takeda G protein-coupled receptor 5 (TGR5). The postprandial increase in plasma bile acid concentrations is therefore a potential metabolic signal. However, this postprandial response has a high interindividual variability. Such variability may affect bile acid receptor activation. METHODS: In this study, we analyzed the inter- and intraindividual variability of fasting and postprandial bile acid concentrations during three identical meals on separate days in eight healthy lean male subjects using a statistical and mathematical approach. MAIN FINDINGS: The postprandial bile acid responses exhibited large interindividual and intraindividual variability. The individual mathematical models, which represent the enterohepatic circulation of bile acids in each subject, suggest that interindividual variability results from quantitative and qualitative differences of distal active uptake, colon transit, and microbial bile acid transformation. Conversely, intraindividual variations in gallbladder kinetics can explain intraindividual differences in the postprandial responses. CONCLUSIONS: We conclude that there is considerable inter- and intraindividual variation in postprandial plasma bile acid levels. The presented personalized approach is a promising tool to identify unique characteristics of underlying physiological processes and can be applied to investigate bile acid metabolism in pathophysiological conditions.


Subject(s)
Bile Acids and Salts/blood , Gallbladder/metabolism , Intestinal Mucosa/metabolism , Adult , Fasting , Humans , Male , Models, Biological , Postprandial Period , Reproducibility of Results , Young Adult
7.
Nutrients ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817857

ABSTRACT

The importance of the postprandial state has been acknowledged, since hyperglycemia and hyperlipidemia are linked with several chronic systemic low-grade inflammation conditions. Humans spend more than 16 h per day in the postprandial state and the postprandial state is acknowledged as a complex interplay between nutrients, hormones and diet-derived metabolites. The purpose of this review is to provide insight into the physiology of the postprandial inflammatory response, the role of different nutrients, the pro-inflammatory effects of metabolic endotoxemia and the anti-inflammatory effects of bile acids. Moreover, we discuss nutritional strategies that may be linked to the described pathways to modulate the inflammatory component of the postprandial response.


Subject(s)
Bile Acids and Salts/immunology , Bile Acids and Salts/metabolism , Endotoxemia/metabolism , Inflammation/metabolism , Nutrients/metabolism , Complement C3/metabolism , Diet, Mediterranean , Diet, Western , Fibroblast Growth Factors/immunology , Fibroblast Growth Factors/metabolism , Humans , Lipopolysaccharides/blood , Metabolic Diseases/diet therapy , NF-kappa B/metabolism , Nutritional Physiological Phenomena , Oxidative Stress , Postprandial Period , Reactive Oxygen Species , Receptors, Cytoplasmic and Nuclear/immunology , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism
8.
Physiol Rep ; 7(16): e14199, 2019 08.
Article in English | MEDLINE | ID: mdl-31423751

ABSTRACT

Intake of a high-fat meal induces a systemic inflammatory response in the postprandial which is augmented in obese subjects. However, the underlying mechanisms of this response have not been fully elucidated. We aimed to assess the effect of gut microbiota modulation on postprandial inflammatory response in lean and obese subjects. Ten lean and ten obese subjects with metabolic syndrome received oral vancomycin 500 mg four times per day for 7 days. Oral high-fat meal tests (50 g fat/m2 body surface area) were performed before and after vancomycin intervention. Gut microbiota composition, leukocyte counts, plasma lipopolysaccharides (LPS), LPS-binding protein (LBP), IL-6 and MCP-1 concentrations and monocyte CCR2 and cytokine expression were determined before and after the high-fat meal. Oral vancomycin treatment resulted in profound changes in gut microbiota composition and significantly decreased bacterial diversity in both groups (phylogenetic diversity pre- versus post-intervention: lean, 56.9 ± 7.8 vs. 21.4 ± 6.6, P < 0.001; obese, 53.9 ± 7.8 vs. 21.0 ± 5.9, P < 0.001). After intervention, fasting plasma LPS significantly increased (lean, median [IQR] 0.81 [0.63-1.45] EU/mL vs. 2.23 [1.33-3.83] EU/mL, P = 0.017; obese, median [IQR] 0.76 [0.45-1.03] EU/mL vs. 1.44 [1.11-4.24], P = 0.014). However, postprandial increases in leukocytes and plasma LPS were unaffected by vancomycin in both groups. Moreover, we found no changes in plasma LBP, IL-6 and MCP-1 or in monocyte CCR2 expression. Despite major vancomycin-induced disruption of the gut microbiota and increased fasting plasma LPS, the postprandial inflammatory phenotype in lean and obese subjects was unaffected in this study.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Inflammation/metabolism , Obesity , Postprandial Period/drug effects , Vancomycin/pharmacology , Adult , Dietary Fats/adverse effects , Humans , Lipopolysaccharides/blood , Male , Metabolic Syndrome/metabolism , Middle Aged , Monocytes/drug effects , Obesity/metabolism
9.
Am J Physiol Endocrinol Metab ; 317(3): E494-E502, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31237451

ABSTRACT

Bile acids, glucagon-like peptide-1 (GLP-1), and fibroblast growth factor 19 (FGF19) play an important role in postprandial metabolism. In this study, we investigated the postprandial bile acid response in plasma and its relation to insulin, GLP-1, and FGF19. First, we investigated the postprandial response to 40-h fast. Then we administered glycine-conjugated deoxycholic acid (gDCA) with the meal. We performed two separate observational randomized crossover studies on healthy, lean men. In experiment 1: we tested 4-h mixed meal after an overnight fast and a 40-h fast. In experiment 2, we tested a 4-h mixed meal test with and without gDCA supplementation. Both studies measured postprandial glucose, insulin, bile acids, GLP-1, and FGF19. In experiment 1, 40 h of fasting induced insulin resistance and increased postprandial GLP-1 and FGF19 concentrations. After an overnight fast, we observed strong correlations between postprandial insulin and gDCA levels at specific time points. In experiment 2, administration of gDCA increased GLP-1 levels and lowered late postprandial glucose without effect on FGF19. Energy expenditure was not affected by gDCA administration. Unexpectedly, 40 h of fasting increased both GLP-1 and FGF19, where the former appeared bile acid independent and the latter bile acid dependent. Second, a single dose of gDCA increased postprandial GLP-1. Therefore, our data add complexity to the physiological regulation of the enterokines GLP-1 and FGF19 by bile acids.


Subject(s)
Bile Acids and Salts/pharmacology , Fasting/physiology , Fibroblast Growth Factors/biosynthesis , Glucagon-Like Peptide 1/biosynthesis , Bile Acids and Salts/blood , Blood Glucose , Cross-Over Studies , Deoxycholic Acid/pharmacology , Dietary Supplements , Energy Metabolism , Fibroblast Growth Factors/blood , Glucagon-Like Peptide 1/blood , Humans , Insulin/blood , Insulin Resistance , Male , Postprandial Period , Young Adult
10.
Diabetologia ; 62(4): 665-675, 2019 04.
Article in English | MEDLINE | ID: mdl-30683945

ABSTRACT

AIMS/HYPOTHESIS: Glucagon-like peptide 1 (GLP-1) reduces appetite and energy intake in humans, whereas the other incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), seems to have no effect on eating behaviour. Interestingly, studies in rodents have shown that concomitant activation of GIP and GLP-1 receptors may potentiate the satiety-promoting effect of GLP-1, and a novel dual GLP-1/GIP receptor agonist was recently shown to trigger greater weight losses compared with a GLP-1 receptor agonist in individuals with type 2 diabetes. The aim of this study was to delineate the effects of combined GIP and GLP-1 receptor activation on energy intake, appetite and resting energy expenditure in humans. METHODS: We examined 17 overweight/obese men in a crossover design with 5 study days. On day 1, a 50 g OGTT was performed; on the following 4 study days, the men received an isoglycaemic i.v. glucose infusion (IIGI) plus saline (154 mmol/l NaCl; placebo), GIP (4 pmol kg-1 min-1), GLP-1 (1 pmol kg-1 min-1) or GIP+GLP-1 (4 and 1 pmol kg-1 min-1, respectively). All IIGIs were performed in a randomised order blinded for the participant and the investigators. The primary endpoint was energy intake as measured by an ad libitum meal after 240 min. Secondary endpoints included appetite ratings and resting energy expenditure, as well as insulin, C-peptide and glucagon responses. RESULTS: Energy intake was significantly reduced during IIGI+GLP-1 compared with IIGI+saline infusion (2715 ± 409 vs 4483 ± 568 kJ [mean ± SEM, n = 17], p = 0.014), whereas there were no significant differences in energy intake during IIGI+GIP (4062 ± 520 kJ) or IIGI+GIP+GLP-1 (3875 ± 451 kJ) infusion compared with IIGI+saline (p = 0.590 and p = 0.364, respectively). Energy intake was higher during IIGI+GIP+GLP-1 compared with IIGI+GLP-1 infusion (p = 0.039). CONCLUSIONS/INTERPRETATION: While GLP-1 infusion lowered energy intake in overweight/obese men, simultaneous GIP infusion did not potentiate this GLP-1-mediated effect. TRIAL REGISTRATION: ClinicalTrials.gov NCT02598791 FUNDING: This study was supported by grants from the Innovation Fund Denmark and the Vissing Foundation.


Subject(s)
Appetite/drug effects , Energy Metabolism/drug effects , Gastric Inhibitory Polypeptide/administration & dosage , Glucagon-Like Peptide 1/administration & dosage , Obesity/drug therapy , Overweight/drug therapy , Adult , Aged , Blood Glucose/analysis , Calorimetry , Cross-Over Studies , Double-Blind Method , Energy Intake/drug effects , Glucagon/metabolism , Humans , Insulin/metabolism , Male , Middle Aged , Weight Loss
11.
Curr Opin Lipidol ; 29(1): 10-17, 2018 02.
Article in English | MEDLINE | ID: mdl-29189433

ABSTRACT

PURPOSE OF REVIEW: To discuss recent insights into the measurement and cellular basis of transintestinal cholesterol excretion (TICE) in humans and to explore TICE as a therapeutic target for increasing reverse cholesterol transport. RECENT FINDINGS: TICE is the net effect of cholesterol excretion by the enterocyte into the intestinal lumen and is the balance between input and output fluxes through the enterocytes. These fluxes are: cholesterol excretion into the intestinal lumen mainly via ATP-binding cassette (ABC) G5/8, cholesterol absorption from the intestine by Niemann-Pick C1 like protein 1, the uptake of plasma lipoproteins by enterocytes at the basolateral membrane, and the excretion of cholesterol in chylomicrons into the lymph. Multiple studies have shown that TICE contributes to fecal neutral sterol (FNS) excretion in humans. TICE can be targeted with plant sterols, liver X receptor agonists, bile acids, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors. SUMMARY: TICE contributes significantly to FNS excretion in humans, independently of the biliary pathway. Knowledge about its underlying cellular mechanisms surges through in-vivo and in-vitro studies in mice and humans. TICE might be an interesting therapeutic target for increasing cholesterol disposal with the feces. Albeit multiple therapeutic options are available, studies showing clinical benefit are still needed.


Subject(s)
Cholesterol/metabolism , Intestinal Absorption , Intestines/physiology , Biological Transport , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...