Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Physiol Behav ; : 114586, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763379

ABSTRACT

This study explored how mental fatigue affects brain activity during a low-intensity bike task utilising a continuous wavelet transformation in electroencephalography (EEG) analysis. The aim was to examine changes in brain activity potentially linked to central motor commands and to investigate their relationship with ratings of perceived exertion (RPE). In this study, sixteen participants (age: 21 ± 6 y, 7 females, 9 males) underwent one familiarization and two experimental trials in a randomised, blinded, cross-over study design. Participants executed a low-intensity bike task (9 min; 45 rpm; intensity (W): 10% below aerobic threshold) after performing a mentally fatiguing (individualized 60-min Stroop task) or a control (documentary) task. Physiological (heart rate, EEG) and subjective measures (self-reported feeling of mental fatigue, RPE, cognitive load, motivation) were assessed prior, during and after the bike task. Post-Stroop, self-reported feeling of mental fatigue was higher in the intervention group (EXP) (74 ± 16) than in the control group (CON) (37 ± 17; p<0.001). No significant differences in RPE during the bike task were observed between conditions. EEG analysis revealed significant differences (p<0.05) in beta frequency (13 - 30 Hz) during the bike task, with EXP exhibiting more desynchronization during the pedal push phase and synchronization during the pedal release phase. These results suggest that mental fatigue, confirmed by both subjective and neurophysiological markers, did not significantly impact RPE during the bike task, possibly due to the use of the CR100 scale or absence of a performance outcome. However, EEG data did reveal significant beta band alterations during the task, indicating increased neural effort under mental fatigue. These findings reveal, for the first time, how motor-related brain activity at the motor cortex is impacted during a low-intensity bike task when mentally fatigued.

2.
Front Neurol ; 15: 1320043, 2024.
Article in English | MEDLINE | ID: mdl-38434204

ABSTRACT

Introduction: The Reactive Balance Test (RBT) could be a valuable addition to research on chronic ankle instability (CAI) and clinical practice, but before it can be used in clinical practice it needs to be reliable. It has already been proven reliable in healthy recreational athletes, but not yet in patients with CAI who have shown persistent deficits in dynamic balance. The study aimed to determine the test-retest, intra-, and inter-rater reliability of the RBT in patients with CAI, and the test-retest and inter-rater reliability of the newly developed RBT score sheet. Methods: We used a repeated-measures, single-group design to administer the RBT to CAI patients on three occasions, scored by multiple raters. We included 27 participants with CAI. The study used multiple reliability measures, including Pearson r, intra-class correlations (ICC), standard error of measurement (SEM), standard error of prediction (SEP), minimal detectable change (MDC), and Bland-Altman plots, to evaluate the reliability of the RBT's outcome measures (visuomotor response time and accuracy). It also assessed the test-retest and inter-rater reliability of the RBT score sheet using the same measures. Results: The ICC measures for test-retest reliability were similar for accuracy (0.609) and VMRT (0.594). Intra-rater reliability had high correlations and ICCs for accuracy (r = 0.816, ICC = 0.815) and VMRT (r = 0.802, ICC = 0.800). Inter-rater reliability had a higher ICC for VMRT (0.868) than for accuracy (0.690). Conclusion: Test-retest reliability was moderate, intra-rater reliability was good, and inter-rater reliability showed moderate reliability for accuracy and good reliability for VMRT. Additionally, the RBT shows robust SEM and mean difference measures. The score sheet method also demonstrated moderate test-retest reliability, while inter-rater reliability was good to excellent. This suggests that the RBT can be a valuable tool in assessing and monitoring balance in patients with CAI.

3.
Phys Ther Sport ; 66: 1-8, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219693

ABSTRACT

OBJECTIVES: To assess the neurocognitive performance while maintaining balance of patients experiencing CAI compared to healthy controls. In patients with CAI, the affected limb was also compared to the contralateral limb. DESIGN: A retrospective case-control study. SETTING: Laboratory study. PARTICIPANTS: We included 27 patients with CAI and 21 healthy controls. METHODS: The study consisted of two sessions, namely familiarisation and experimentation, which were scheduled with a gap of at least one week between them. During the experimental trial, both groups performed the Y-Balance Test and Reactive Balance Test once on each limb. MAIN OUTCOME MEASURES: The main outcome measures are accuracy and visuomotor response time (VMRT) calculated via video-analysis and with the Fitlight™-hardware and software respectively during the Reactive Balance Test (RBT). RESULTS: No data was excluded from the final analysis. Patients with CAI exhibited significantly lower accuracy than healthy controls, with a mean difference of 8.7% (±3.0)%. There were no differences for VMRT between groups. Additionally, no significant differences were observed between the affected and contralateral limb of the patient group for both accuracy and VMRT. CONCLUSIONS: Patients with CAI showed lower accuracy, but similar VMRT compared to healthy controls during a neurocognitive balance task, indicating impaired neurocognitive function. Patients exhibit comparable speed to healthy individuals when completing neurocognitive balance tasks, yet they display a higher frequency of accuracy errors in accurately perceiving their environment and making decisions under time constraints. Future research should gain more insights in which other cognitive domains are affected in patients with CAI for a better grasp of this condition's underlying mechanism.


Subject(s)
Ankle , Joint Instability , Humans , Case-Control Studies , Ankle Joint , Retrospective Studies , Postural Balance/physiology , Chronic Disease
4.
Med Sci Sports Exerc ; 56(4): 655-662, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38079309

ABSTRACT

PURPOSE: Fitness, physical activity, body composition, and sleep have all been proposed to explain differences in brain health. We hypothesized that an exercise intervention would result in improved fitness and body composition and would be associated with improved structural brain health. METHODS: In a randomized controlled trial, we studied 485 older adults who engaged in an exercise intervention ( n = 225) or a nonexercise comparison condition ( n = 260). Using magnetic resonance imaging, we estimated the physiological age of the brain (BrainAge) and derived a predicted age difference compared with chronological age (brain-predicted age difference (BrainPAD)). Aerobic capacity, physical activity, sleep, and body composition were assessed and their impact on BrainPAD explored. RESULTS: There were no significant differences between experimental groups for any variable at any time point. The intervention group gained fitness, improved body composition, and increased total sleep time but did not have significant changes in BrainPAD. Analyses of changes in BrainPAD independent of group assignment indicated significant associations with changes in body fat percentage ( r (479) = 0.154, P = 0.001), and visceral adipose tissue (VAT) ( r (478) = 0.141, P = 0.002), but not fitness ( r (406) = -0.075, P = 0.129), sleep ( r (467) range, -0.017 to 0.063; P range, 0.171 to 0.710), or physical activity ( r (471) = -0.035, P = 0.444). With linear regression, changes in body fat percentage and VAT significantly predicted changes in BrainPAD ( ß = 0.948, P = 0.003) with 1-kg change in VAT predicting 0.948 yr of change in BrainPAD. CONCLUSIONS: In cognitively normal older adults, exercise did not appear to impact BrainPAD, although it was effective in improving fitness and body composition. Changes in body composition, but not fitness, physical activity, or sleep impacted BrainPAD. These findings suggest that focus on weight control, particularly reduction of central obesity, could be an interventional target to promote healthier brains.


Subject(s)
Exercise , Physical Fitness , Humans , Aged , Physical Fitness/physiology , Exercise/physiology , Adipose Tissue , Body Composition/physiology , Aging , Exercise Therapy , Brain/diagnostic imaging
5.
Med Sci Sports Exerc ; 56(3): 435-445, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37847068

ABSTRACT

PURPOSE: Several mechanisms have been proposed to explain how mental fatigue degrades sport performance. In terms of endurance performance, a role for an increased perceived exertion has been demonstrated. Using electroencephalography and, more specifically, the movement-related cortical potential (MRCP), the present study explored the neural mechanisms that could underlie the mental fatigue-associated increase in perceived exertion. METHODS: Fourteen participants (age, 23 ± 2 yr; 5 women, 9 men) performed one familiarization and two experimental trials in a randomized, blinded, crossover study design. Participants had to complete a submaximal leg extension task after a mentally fatiguing task (EXP; individualized 60-min Stroop task) or control task (CON; documentary). The leg extension task consisted of performing 100 extensions at 35% of 1 repetition maximum, during which multiple physiological (heart rate, electroencephalography) and subjective measures (self-reported feeling of mental fatigue, cognitive load, behand motivation, ratings of perceived exertion) were assessed. RESULTS: Self-reported feeling of mental fatigue was higher in EXP (72 ± 18) compared with CON (37 ± 17; P < 0.001). A significant decrease in flanker accuracy was detected only in EXP (from 0.96 ± 0.03% to 0.03%; P < 0.05). No significant differences between conditions were found in MRCP characteristics and perceived exertion. Specifically in EXP, alpha wave power increased during the leg extension task ( P < 0.01). CONCLUSIONS: Mental fatigue did not impact the perceived exertion or MRCP characteristics during the leg extension task. This could be related to low perceived exertion and/or the absence of a performance outcome during the leg extension task. The increase in alpha power during the leg extension task in EXP suggests that participants may engage a focused internal attention mechanism to maintain performance and mitigate feelings of fatigue.


Subject(s)
Physical Endurance , Sports , Male , Humans , Female , Young Adult , Adult , Cross-Over Studies , Physical Endurance/physiology , Nutritional Status , Mental Fatigue
6.
Ergonomics ; 67(5): 597-618, 2024 May.
Article in English | MEDLINE | ID: mdl-37480301

ABSTRACT

Due to differences in actuation and design, active and passive industrial back exoskeletons could influence functional performance, i.e., work performance, perceived task difficulty, and discomfort, differently. Therefore, this study investigated and compared the impact of the active CrayX (7 kg) and passive Paexo Back (4.5 kg) on functional performance. Eighteen participants performed twelve work-related tasks with both types of exoskeletons and without (NoExo). The CrayX hindered work performance up to 22% in multiple tasks, compared to the Paexo Back and NoExo, while work performance between NoExo and the Paexo Back condition was more comparable, except for stair climbing (13% hindrance). Perceived task difficulty and discomfort seldomly varied between both exoskeletons. Although the CrayX shows promise to benefit workers, limitations in hindrance and comfort should first be addressed. The Paexo Back has demonstrated an advantage in certain static tasks. However, increasing its potential across a broader range of tasks seems warranted.Practitioner Summary: Differences between industrial back exoskeletons with regard to functional performance, i.e. work performance, discomfort and perceived task difficulty, were investigated by evaluating the active CrayX and passive Paexo Back back exoskeletons. The CrayX significantly hindered functional performance, while the Paexo Back seldomly affected functional performance.Abbreviations: WMSD: Work-related musculoskeletal disorder; NoExo: No Exoskeleton; GD: General discomfort; PTD: Perceived task difficulty; BMI: Body Mass Index.


Subject(s)
Exoskeleton Device , Musculoskeletal Diseases , Work Performance , Humans , Body Mass Index , Industry
7.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941288

ABSTRACT

Various barriers prevent the adoption of occupational exoskeletons. It is therefore important to understand why some people are willing to use occupational exoskeletons, while others are not. To identify why people use or do not use exoskeletons, we created a typology describing different types of users and non-users. These types were created based on existing literature on internet adoption and social robots. Next, literature and empirical data were used to identify reasons why some people use exoskeletons and others do not use them (yet). The typology includes users with pain and users without work-related musculoskeletal disorders, but also non-users: resisters, rejecters, discontinuers, excluded or expelled non-users. It can be used by companies interested in implementing exoskeletons to identify possible early adopters. For exoskeleton designers, it can be used as a tool to identify non-users and focus on design strategies to enable non-users to become users (such as making exoskeletons that would fit people with a wide range of body shapes). Future research can use these types to identify users and non-users in field trials or pilot projects.


Subject(s)
Exoskeleton Device , Humans , Pilot Projects
9.
Sci Rep ; 13(1): 15668, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735584

ABSTRACT

COVID-19 can induce neurological sequelae, negatively affecting the quality of life. Unravelling this illness's impact on structural brain connectivity, white-matter microstructure (WMM), and cognitive performance may help elucidate its implications. This cross-sectional study aimed to investigate differences in these factors between former hospitalised COVID-19 patients (COV) and healthy controls. Group differences in structural brain connectivity were explored using Welch-two sample t-tests and two-sample Mann-Whitney U tests. Multivariate linear models were constructed (one per region) to examine fixel-based group differences. Differences in cognitive performance between groups were investigated using Wilcoxon Rank Sum tests. Possible effects of bundle-specific FD measures on cognitive performance were explored using a two-group path model. No differences in whole-brain structural organisation were found. Bundle-specific metrics showed reduced fiber density (p = 0.012, Hedges' g = 0.884) and fiber density cross-section (p = 0.007, Hedges' g = 0.945) in the motor segment of the corpus callosum in COV compared to healthy controls. Cognitive performance on the motor praxis and digit symbol substitution tests was worse in COV than healthy controls (p < 0.001, r = 0.688; p = 0.013, r = 422, respectively). Associations between the cognitive performance and bundle-specific FD measures differed significantly between groups. WMM and cognitive performance differences were observed between COV and healthy controls.


Subject(s)
COVID-19 , Connectome , Humans , Case-Control Studies , Cross-Sectional Studies , Quality of Life
11.
Sports Med ; 53(7): 1423-1443, 2023 07.
Article in English | MEDLINE | ID: mdl-37155129

ABSTRACT

BACKGROUND: Lateral ankle sprains are the most common ankle injuries in sports and have the highest recurrence rates. Almost half of the patients experiencing lateral ankle sprains develop chronic ankle instability. Patients with chronic ankle instability experience persistent ankle dysfunctions and detrimental long-term sequelae. Changes at the brain level are put forward to explain these undesirable consequences and high recurrence rates partially. However, an overview of possible brain adaptations related to lateral ankle sprains and chronic ankle instability is currently lacking. OBJECTIVE: The primary purpose of this systematic review is to provide a comprehensive overview of the literature on structural and functional brain adaptations related to lateral ankle sprains and in patients with chronic ankle instability. METHODS: PubMed, Web of Science, Scopus, Embase, EBSCO-SPORTDiscus and Cochrane Central Register of Controlled Trials were systematically searched until 14 December, 2022. Meta-analyses, systematic reviews and narrative reviews were excluded. Included studies investigated functional or structural brain adaptations in patients who experienced a lateral ankle sprain or with chronic ankle instability and who were at least 18 years of age. Lateral ankle sprains and chronic ankle instability were defined following the recommendation of the International Ankle Consortium. Three authors independently extracted the data. They extracted the authors' name, publication year, study design, inclusion criteria, participant characteristics, the sample size of the intervention and control groups, methods of neuroplasticity testing, as well as all means and standard deviations of primary and secondary neuroplasticity outcomes from each study. Data reported on copers were considered as part of the control group. The quality assessment tool for observational and cross-sectional studies was used for the risk of bias assessment. This study is registered on PROSPERO, number CRD42021281956. RESULTS: Twenty articles were included, of which only one investigated individuals who experienced a lateral ankle sprain. In all studies combined, 356 patients with chronic ankle instability, 10 who experienced a lateral ankle sprain and 46 copers were included. White matter microstructure changes in the cerebellum have been related to lateral ankle sprains. Fifteen studies reported functional brain adaptations in patients with chronic ankle instability, and five articles found structural brain outcomes. Alterations in the sensorimotor network (precentral gyrus and supplementary motor area, postcentral gyrus and middle frontal gyrus) and dorsal anterior cingulate cortex were mainly found in patients with chronic ankle instability. DISCUSSION: The included studies demonstrated structural and functional brain adaptations related to lateral ankle sprains and chronic ankle instability compared to healthy individuals or copers. These adaptations correlate with clinical outcomes (e.g. patients' self-reported function and different clinical assessments) and might contribute to the persisting dysfunctions, increased re-injury risk and long-term sequelae seen in these patients. Thus, rehabilitation programmes should integrate sensorimotor and motor control strategies to cope with neuroplasticity related to ligamentous ankle injuries.


Subject(s)
Ankle Injuries , Joint Instability , Sprains and Strains , Humans , Ankle , Cross-Sectional Studies , Ankle Joint , Disease Progression , Brain
12.
Appl Ergon ; 110: 104026, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37060653

ABSTRACT

Mental fatigue (MF) is likely to occur in the industrial working population. However, the link between MF and industrial work performance has not been investigated, nor how this interacts with a passive lower back exoskeleton used during industrial work. Therefore, to elucidate its potential effect(s), this study investigated the accuracy of work performance and movement duration through a dual task paradigm and compared results between mentally fatigued volunteers and controls, with and without the exoskeleton. No main effects of MF and the exoskeleton were found. However, when mentally fatigued and wearing the exoskeleton, movement duration significantly increased compared to the baseline condition (ßMF:Exo = 0.17, p = .02, ω2 = .03), suggesting an important interaction between the exoskeleton and one's psychobiological state. Importantly, presented data indicate a negative effect on production efficiency through increased performance time. Further research into the cognitive aspects of industrial work performance and human-exoskeleton interaction is therefore warranted.


Subject(s)
Exoskeleton Device , Work Performance , Humans , Movement , Mental Fatigue/psychology , Biomechanical Phenomena , Electromyography
13.
IEEE Trans Cybern ; 53(12): 7483-7496, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37015459

ABSTRACT

This article presents a systematic review on wearable robotic devices that use human-in-the-loop optimization (HILO) strategies to improve human-robot interaction. A total of 46 HILO studies were identified and divided into upper and lower limb robotic devices. The main aspects from HILO were identified, reviewed, and classified in four areas: 1) human-machine systems; 2) optimization methods; 3) control strategies; and 4) experimental protocols. A variety of objective functions (physiological, biomechanical, and subjective), optimization strategies, and optimized control parameters configurations used in different control strategies are presented and analyzed. An overview of experimental protocols is provided, including metrics, tasks, and conditions tested. Moreover, the relevance given to training or adaptation periods was explored. We outline an HILO framework that includes current wearable robots, optimization strategies, objective functions, control strategies, and experimental protocols. We conclude by highlighting current research gaps and defining future directions to improve the development of advanced HILO strategies in upper and lower limb wearable robots.


Subject(s)
Robotic Surgical Procedures , Robotics , Humans , Lower Extremity/physiology , Man-Machine Systems
14.
Biomed Eng Online ; 22(1): 14, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36793091

ABSTRACT

BACKGROUND: A mechanical ankle-foot prosthesis (Talaris Demonstrator) was developed to improve prosthetic gait in people with a lower-limb amputation. This study aims to evaluate the Talaris Demonstrator (TD) during level walking by mapping coordination patterns based on the sagittal continuous relative phase (CRP). METHODS: Individuals with a unilateral transtibial amputation, transfemoral amputation and able-bodied individuals completed 6 minutes of treadmill walking in consecutive blocks of 2 minutes at self-selected (SS) speed, 75% SS speed and 125% SS speed. Lower extremity kinematics were captured and hip-knee and knee-ankle CRPs were calculated. Statistical non-parametric mapping was applied and statistical significance was set at 0.05. RESULTS: The hip-knee CRP at 75% SS walking speed with the TD was larger in the amputated limb of participants with a transfemoral amputation compared to able-bodied individuals at the beginning and end of the gait cycle (p = 0.009). In people with a transtibial amputation, the knee-ankle CRP at SS and 125% SS walking speeds with the TD were smaller in the amputated limb at the beginning of the gait cycle compared to able-bodied individuals (p = 0.014 and p = 0.014, respectively). Additionally, no significant differences were found between both prostheses. However, visual interpretation indicates a potential advantage of the TD over the individual's current prosthesis. CONCLUSION: This study provides lower-limb coordination patterns in people with a lower-limb amputation and reveals a possible beneficial effect of the TD over the individuals' current prosthesis. Future research should include a well-sampled investigation of the adaptation process combined with the prolonged effects of the TD.


Subject(s)
Amputees , Artificial Limbs , Humans , Ankle , Case-Control Studies , Walking , Gait , Amputation, Surgical , Biomechanical Phenomena
16.
Sports Med Open ; 9(1): 14, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36808018

ABSTRACT

BACKGROUND: The negative effect of mental fatigue (MF) on physical performance has recently been questioned. One reason behind this could lie in the interindividual differences in MF-susceptibility and the individual features influencing them. However, the range of individual differences in mental fatigue-susceptibility is not known, and there is no clear consensus on which individual features could be responsible for these differences. OBJECTIVE: To give an overview of interindividual differences in the effects of MF on whole-body endurance performance, and individual features influencing this effect. METHODS: The review was registered on the PROSPERO database (CRD42022293242). PubMed, Web of Science, SPORTDiscus and PsycINFO were searched until the 16th of June 2022 for studies detailing the effect of MF on dynamic maximal whole-body endurance performance. Studies needed to include healthy participants, describe at least one individual feature in participant characteristics, and apply at least one manipulation check. The Cochrane crossover risk of bias tool was used to assess risk of bias. The meta-analysis and regression were conducted in R. RESULTS: Twenty-eight studies were included, with 23 added to the meta-analysis. Overall risk of bias of the included studies was high, with only three presenting an unclear or low rating. The meta-analysis shows the effect of MF on endurance performance was on average slightly negative (g = - 0.32, [95% CI - 0.46; - 0.18], p < 0.001). The multiple meta-regression showed no significant influences of the included features (i.e. age, sex, body mass index and physical fitness level) on MF-susceptibility. CONCLUSIONS: The present review confirmed the negative impact of MF on endurance performance. However, no individual features influencing MF-susceptibility were identified. This can partially be explained by the multiple methodological limitations such as underreporting of participant characteristics, lack of standardization across studies, and the restricted inclusion of potentially relevant variables. Future research should include a rigorous description of multiple different individual features (e.g., performance level, diet, etc.) to further elucidate MF mechanisms.

17.
J Neuroeng Rehabil ; 20(1): 4, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639655

ABSTRACT

BACKGROUND: Enhancing the quality of life of people with a lower limb amputation is critical in prosthetic development and rehabilitation. Yet, no overview is available concerning the impact of passive, quasi-passive and active ankle-foot prostheses on quality of life. OBJECTIVE: To systematically review the therapeutic benefits of performing daily activities with passive, quasi-passive and active ankle-foot prostheses in people with a lower limb amputation. METHODS: We searched the Pubmed, Web of Science, Scopus and Pedro databases, and backward citations until November 3, 2021. Only English-written randomised controlled trials, cross-sectional, cross-over and cohort studies were included when the population comprised individuals with a unilateral transfemoral or transtibial amputation, wearing passive, quasi-passive or active ankle-foot prostheses. The intervention and outcome measures had to include any aspect of quality of life assessed while performing daily activities. We synthesised the participants' characteristics, type of prosthesis, intervention, outcome and main results, and conducted risk of bias assessment using the Cochrane risk of bias tool. This study is registered on PROSPERO, number CRD42021290189. RESULTS: We identified 4281 records and included 34 studies in total. Results indicate that quasi-passive and active prostheses are favoured over passive prostheses based on biomechanical, physiological, performance and subjective measures in the short-term. All studies had a moderate or high risk of bias. CONCLUSION: Compared to passive ankle-foot prostheses, quasi-passive and active prostheses significantly enhance the quality of life. Future research should investigate the long-term therapeutic benefits of prosthetics devices.


Subject(s)
Artificial Limbs , Humans , Quality of Life , Cross-Sectional Studies , Amputation, Surgical , Lower Extremity
18.
Sports Med Open ; 9(1): 4, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36625965

ABSTRACT

BACKGROUND: Plyometric training can be performed through many types of exercises involving the stretch-shortening cycle in lower limbs. In the last decades, a high number of studies have investigated the effects of plyometric training on several outcomes in different populations. OBJECTIVES: To systematically review, summarize the findings, and access the quality of published meta-analyses investigating the effects of plyometric training on physical performance. DESIGN: Systematic umbrella review of meta-analyses. DATA SOURCES: Meta-analyses were identified using a systematic literature search in the databases PubMed/MEDLINE, Scopus, SPORTDiscus, Web of Science, Cochrane Library and Scielo. ELIGIBILITY CRITERIA FOR SELECTING META-ANALYSES: Meta-analyses that examined the effects of plyometric training on physical fitness in different populations, age groups, and sex. RESULTS: Twenty-nine meta-analyses with moderate-to-high methodological quality were included in this umbrella review. We identified a relevant weakness in the current literature, in which five meta-analyses included control group comparisons, while 24 included pre-to-post-effect sizes. Trivial-to-large effects were found considering the effects of plyometric training on physical performance for healthy individuals, medium-trivial effects for the sports athletes' groups and medium effects for different sports athletes' groups, age groups, and physical performance. CONCLUSION: The available evidence indicates that plyometric training improves most related physical fitness parameters and sports performance. However, it is important to outline that most meta-analyses included papers lacking a control condition. As such, the results should be interpreted with caution. PROSPERO number: CRD42020217918.

19.
Accid Anal Prev ; 179: 106893, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36379091

ABSTRACT

BACKGROUND: Cycling for transportation and recreation is gaining in popularity, especially in older age groups. The rise in electric assisted cycles (EAC) may also have a role to play in this. With an increase in the number of cyclists comes an increase in the prevalence of cycle crashes. However, there is a lack of knowledge on EAC crashes and crash studies including cycle use data. An important question is also whether the high number of serious road injuries among older cyclists, is due to increased risk or more serious consequences in the event of a crash. STUDY AIM: To compare the odds of reporting a cycle crash on a conventional (CC) against electrically assisted cycle (EAC), while controlling for age, gender, BMI, impairments while cycling, cycling frequency and region of residence. METHODS: A 12-month retrospective cross-sectional survey-based study, including male and female cyclists aged 40+ years, was conducted in Belgium and the Netherlands. Socio-demographics, physical and mental impairments while cycling (such as lower reaction time), crash details and cycling frequency data were collected. Cyclists were grouped into CC, EAC or both (CC + EAC) based on the type of cycle they used during the study period. Logistic regression models were used to calculate the odds of reporting a cycle crash. Main and interaction effects were studied. RESULTS: 1,919 cyclists were included in the data analysis (63.2 ± 11.1 years; 50% women). 319 (17% of the total sample) cyclists reported a crash in the previous 12 months, of which 36% were EAC crashes. Those reporting a crash were significantly younger compared to those not reporting a crash. The following significant main effects were observed: those cycling on an EAC had a higher odds of reporting a cycle crash compared to those cycling on a CC (OR = 1.41, 95% CI = 1.01-1.97); cyclists in the category average and high on mental impairments while cycling had a higher odds of reporting a cycle crash compared to those in the category low (OR = 1.72, 95% CI = 1.23-2.40 and OR = 3.49, 95% CI = 2.51-4.90, respectively); higher cycling frequency is related to higher odds of reporting a cycle crash (OR = 3.25, 95% CI = 2.25-4.90). A significant interaction effect was observed between age category and gender (OR = 1.93, 95% CI = 1.15-3.26). Post-hoc tests revealed that men in the younger age category (40-64 years) had the highest probability (18.95%) of reporting a cycle crash, whereas men in the oldest age category (65+ years) had the lowest probability (9.99%) of reporting a cycle crash. No significant difference between age categories in women was observed. CONCLUSION: This study indicates that within a cohort of middle aged and older adults living in regions with high to low cycling modal shares, cycle type, mental impairments while cycling, cycling frequency and region of residence play a significant role in the odds of reporting a (minor) cycle crash. Men in the age category 40-64 years have a significantly higher probability of reporting a cycle crash compared to men of 65+ years. Safety campaigns and instructions should pay particular attention to men in the age category 40-64 years and those with a mental impairment while cycling.


Subject(s)
Accidents, Traffic , Bicycling , Female , Male , Humans , Middle Aged , Aged , Retrospective Studies , Self Report , Cross-Sectional Studies
20.
Int J Sports Med ; 44(3): 192-198, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35724690

ABSTRACT

The aim was to investigate the test-retest reliability of performance and physiological variables of a submaximal wheelchair rugby field test. Eight trained wheelchair rugby athletes with a spinal cord injury (age: median 40, interquartile range 6.9 y; body mass: median 77.7, interquartile range 23.9 kg) performed a submaximal field test two times with a duration of 41 min, split up into four sets of eight min. Each set included eight laps with one eight-meter sprint (SP8) and one four-meter sprint (SP4). The absolute and relative reliability and the performance decrease (fatigue) across the sets were investigated. The examined variables were sprinting time, heart rate, and RPE. The measured parameters showed moderate (peak heart rate ICC3,1=0.663, peak rate of perceived exertion ICC3,1=0.718), good (SP4 ICC3,1=0.874), and excellent (mean heart rate ICC3,1=0.905, SP8 ICC3,1=0.985) test-retest reliability. Fatigue was observed for SP8 in test 2 between set 2/3 and set 2/4. For test 1 a significant decrease of performance for SP4 was found between set 2/3, set 2/4 and between set 3/4. In conclusion the submaximal field test showed moderate to excellent reliability for all measured parameters. The observed fatigue seems to be not clinically relevant. The test can be recommended to assess the effects of training or interventions.


Subject(s)
Spinal Cord Injuries , Wheelchairs , Humans , Reproducibility of Results , Rugby , Fatigue , Exercise Test
SELECTION OF CITATIONS
SEARCH DETAIL
...