Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Prostaglandins Other Lipid Mediat ; 156: 106580, 2021 10.
Article in English | MEDLINE | ID: mdl-34252545

ABSTRACT

Using a wild yam (Dioscorea japonica), we previously found novel anti-inflammatory and anti-carcinogenic effects via the downregulation of cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1. One of the substances in wild yam is a steroidal saponin, diosgenin. We demonstrated that diosgenin suppressed COX-2 in human non-small-cell lung carcinoma A549 cells via nuclear factor-kappa B (NF-κB) translocation and the effects were reversed by a glucocorticoid receptor antagonist, RU486. In lipopolysaccharide (LPS)-induced mouse liver injury, COX-2 and mPGES-1 were induced and localized in sinusoidal macrophages and endothelial cells; however, diosgenin administration significantly suppressed Ptgs2 and Ptges expression and decreased COX-2 and mPGES-1 immunopositive cells in the sinusoids. Multiple immunohistochemical analyses showed that diosgenin had an effect on COX-2 and mPGES-1, particularly in the macrophages. Thus, we showed that diosgenin downregulated COX-2 and mPGES-1 via the glucocorticoid receptor and suppressed COX-2 and mPGES-1 in the macrophages of LPS-induced acute mouse liver injury.


Subject(s)
Prostaglandin-E Synthases
2.
Biosci Biotechnol Biochem ; 84(4): 757-763, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31868102

ABSTRACT

Prostaglandin E2 (PGE2), which is a potent pro-inflammatory lipid mediator, is biosynthesized from arachidonic acid by cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Non-steroidal anti-inflammatory drugs (NSAIDs) are used clinically as COX inhibitors, but they have gastrointestinal and cardiovascular side-effects. Thus, the terminal enzyme mPGES-1 holds promise as the next therapeutic target. In this study, we found that the ellagitannins granatin A and granatin B isolated from pomegranate leaves, and geraniin, which is their structural analog, selectively suppressed mPGES-1 expression without affecting COX-2 in non-small cell lung carcinoma A549 cells. The ellagitannins also down-regulated tumor necrosis factor α, inducible nitric oxide synthase, and anti-apoptotic factor B-cell chronic lymphocytic leukemia/lymphoma 2, and induced A549 cells to undergo apoptosis. These findings indicate that the ellagitannins have anti-inflammatory and anti-carcinogenic effects, due to their specific suppression of mPGES-1.Abbreviations: Bcl-2: B-cell chronic lymphocytic leukemia/lymphoma 2; COX: cyclooxygenase; CRE: cAMP response element; DHHDP: dehydrohexahydroxydiphenoyl; Et2O: diethyl ether; EtOAc: ethyl acetate; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; iNOS: inducible nitric oxide synthase; mPGES-1: microsomal prostaglandin E synthase-1; n-BuOH: water-saturated n-butanol; NSAIDs: non-steroidal anti-inflammatory drugs; NF-κB: nuclear factor-κB; PG: prostaglandin; TNF: tumor necrosis factor; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.


Subject(s)
Apoptosis/drug effects , Hydrolyzable Tannins/pharmacology , Lung Neoplasms/pathology , Plant Leaves/chemistry , Pomegranate/chemistry , Prostaglandin-E Synthases/antagonists & inhibitors , A549 Cells , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Humans , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/metabolism , RNA, Messenger/genetics
3.
J Clin Biochem Nutr ; 62(2): 139-147, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29610553

ABSTRACT

Hyperproduced prostaglandin E2 by cyclooxygenase-2 and microsomal prostaglandin E synthase-1 evokes several pathophysiological responses such as inflammation and carcinogenesis. Our recent study demonstrated that Dioscorea japonica extract suppressed the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 and induced apoptosis in lung carcinoma A549 cells. In the present study, we investigated the effects of Dioscorea japonica on squamous cell carcinoma of mouse skin. Dioscorea japonica feeding and Dioscorea japonica extract topical application suppressed the expression of cyclooxygenase-2, microsomal prostaglandin E synthase-1, interleukin-1ß and interleukin-6 and inhibited tumor formation, hyperplasia and inflammatory cell infiltration. Immunohistochemical analyses showed the immunoreactivities of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in tumor keratinocytes and stronger immunoreactivities of cyclooxygenase-2 and hematopoietic prostaglandin D synthase in epidermal dendritic cells (Langerhans cells). Treatment with Dioscorea japonica decreased the immunoreactivity of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. These results indicate that Dioscorea japonica may have inhibitory effects on inflammation and carcinogenesis via suppression of the prostaglandin E2 synthetic pathway.

SELECTION OF CITATIONS
SEARCH DETAIL