Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 184: 61-74, 2023 11.
Article in English | MEDLINE | ID: mdl-37844423

ABSTRACT

AIMS: Aorta exhibits regional heterogeneity (structural and functional), while different etiologies for thoracic and abdominal aortic aneurysm (TAA, AAA) are recognized. Tissue inhibitor of metalloproteinases (TIMPs) regulate vascular remodeling through different mechanisms. Region-dependent functions have been reported for TIMP3 and TIMP4 in vascular pathologies. We investigated the region-specific function of these TIMPs in development of TAA versus AAA. METHODS & RESULTS: TAA or AAA was induced in male and female mice lacking TIMP3 (Timp3-/-), TIMP4 (Timp4-/-) or in wildtype (WT) mice by peri-adventitial elastase application. Loss of TIMP3 exacerbated TAA and AAA severity in males and females, with a greater increase in proteinase activity, smooth muscle cell phenotypic switching post-AAA and -TAA, while increased inflammation was detected in the media post-AAA, but in the adventitia post-TAA. Timp3-/- mice showed impaired intimal barrier integrity post-AAA, but a greater adventitial vasa-vasorum branching post-TAA, which could explain the site of inflammation in AAA versus TAA. Severity of TAA and AAA in Timp4-/- mice was similar to WT mice. In vitro, Timp3 knockdown more severely compromised the permeability of human aortic EC monolayer compared to Timp4 knockdown or the control group. In aneurysmal aorta specimens from patients, TIMP3 expression decreased in the media in AAA, and in adventitial in TAA specimens, consistent with the impact of its loss in AAA versus TAA in mice. CONCLUSION: TIMP3 loss exacerbates inflammation, adverse remodeling and aortic dilation, but triggers different patterns of remodeling in AAA versus TAA, and through different mechanisms.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Aneurysm, Thoracic , Humans , Male , Female , Animals , Mice , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Tissue Inhibitor of Metalloproteinases/genetics , Tissue Inhibitor of Metalloproteinases/metabolism , Aortic Aneurysm, Abdominal/metabolism , Aorta/pathology , Inflammation/pathology , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
2.
Mater Horiz ; 9(11): 2698-2721, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36189465

ABSTRACT

Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.


Subject(s)
Biocompatible Materials , Collagen , Animals , Hydroxyproline/chemistry , Reproducibility of Results , Collagen/genetics , Genetic Code/genetics
3.
Biomater Adv ; 139: 212997, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882145

ABSTRACT

Despite the potential tunable properties of blank slate collagen-like proteins (CLP), an alternative to animal-originated collagen, assembling them into a stable 3D hydrogel to mimic extracellular matrix is a challenge. To address this constraint, the CLP (without hydroxyproline, CLPpro) and its variants encoding functional unnatural amino acids such as hydroxyproline (CLPhyp) and 3,4-dihydroxyphenylalanine (CLPdopa) were generated through genetic code engineering for 3D hydrogel development. The CLPhyp and CLPdopa were chosen to enhance the intermolecular hydrogen bond interaction through additional hydroxyl moiety and thereby facilitate the self-assembly into a fibrillar network of the hydrogel. Hydrogelation was induced through genipin as a cross-linker, enabling intermolecular cross-linking to form a hydrogel. Spectroscopic and rheological analyses confirmed that CLPpro and its variants maintained native triple-helical structure, which is necessary for its function, and viscoelastic nature of the hydrogels, respectively. Unlike CLPpro, the varients (CLPhyp and CLPdopa) increased pore size formation in the hydrogel scaffold, facilitating 3T3 fibroblast cell interactions. DSC analysis indicated that the stability of the hydrogels got increased upon the genetic incorporation of hydroxyproline (CLPhyp) and dopa (CLPdopa) in CLPpro. In addition, CLPdopa hydrogel was found to be relatively stable against collagenase enzyme compared to CLPpro and CLPhyp. It is the first report on 3D biocompatible hydrogel preparation by tailoring CLP sequence with non-natural amino acids. These next-generation tunable CLP hydrogels open a new venue to design synthetic protein-based biocompatible 3D biomaterials for tissue engineering applications.


Subject(s)
Hydrogels , Tissue Engineering , Animals , Collagen/metabolism , Extracellular Matrix , Hydrogels/chemistry , Hydroxyproline/metabolism , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...