Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730609

ABSTRACT

Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.

2.
Pharmaceutics ; 16(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543267

ABSTRACT

Recent advances in comprehending the essential molecular mechanisms that govern cancer signaling have revealed the pivotal involvement of kinases in the development and progression of various cancer types [...].

3.
Ageing Res Rev ; 95: 102251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428821

ABSTRACT

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.


Subject(s)
Neurodegenerative Diseases , Regulated Cell Death , Humans , Aging/physiology , Apoptosis/physiology , Longevity
SELECTION OF CITATIONS
SEARCH DETAIL
...