Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Vet Dermatol ; 26(4): 213-e47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25963063

ABSTRACT

BACKGROUND: The limited characterization of equine skin, eye and hoof epithelial stem cell (ESC) and differentiation markers impedes the investigation of the physiology and pathophysiology of these tissues. HYPOTHESIS/OBJECTIVES: To characterize ESC and differentiation marker expression in epithelial tissues of the equine eye, haired skin and hoof capsule. METHODS: Indirect immunofluorescence microscopy and immunoblotting were used to detect expression and tissue localization of keratin (K) isoforms K3, K10, K14 and K124, the transcription factor p63 (a marker of ESCs) and phosphorylated p63 [pp63; a marker of ESC transition to transit-amplifying (TA) cell] in epithelial tissues of the foot (haired skin, hoof coronet and hoof lamellae) and the eye (limbus and cornea). RESULTS: Expression of K14 was restricted to the basal layer of epidermal lamellae and to basal and adjacent suprabasal layers of the haired skin, coronet and corneal limbus. Coronary and lamellar epidermis was negative for both K3 and K10, which were expressed in the cornea/limbus epithelium and haired skin epidermis, respectively. Variable expression of p63 with relatively low to high levels of phosphorylation was detected in individual basal and suprabasal cells of all epithelial tissues examined. CONCLUSIONS: To the best of the author's knowledge, this is the first report of the characterization of tissue-specific keratin marker expression and the localization of putative epithelial progenitor cell populations, including ESCs (high p63 expression with low pp63 levels) and TA cells (high expression of both p63 and pp63), in the horse. These results will aid further investigation of epidermal and corneal epithelial biology and regenerative therapies in horses.


Subject(s)
Cell Differentiation/physiology , Cornea/cytology , Hoof and Claw/cytology , Horses/anatomy & histology , Skin/cytology , Stem Cells/physiology , Animals , Antigens, Differentiation/metabolism , Cornea/metabolism , Epithelium/metabolism , Female , Fluorescent Antibody Technique, Indirect , Hoof and Claw/metabolism , Horses/metabolism , Immunoblotting , Keratins/metabolism , Male , Skin/metabolism , Stem Cells/metabolism
2.
Biol Reprod ; 88(1): 27, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23221397

ABSTRACT

Genetic modification of germline stem cells (GSCs) is an alternative approach to generate large transgenic animals where transgenic GSCs are transplanted into a recipient testis to generate donor-derived transgenic sperm. The objective of the present study was to explore the application of viral vectors in delivering an enhanced green fluorescent protein (EGFP) transgene into GSCs for production of transgenic gametes through germ cell transplantation. Both adeno-associated virus (AAV)- and lentivirus (LV)-based vectors were effective in transducing pig GSCs, resulting in the production of transgenic sperm in recipient boars. Twenty-one boars treated with busulfan to deplete endogenous GSCs and nine nontreated boars received germ cell transplantation at 12 wk of age. Semen was collected from recipient boars from 5 to 7 mo posttransplantation when boars became sexually mature, and semen collection continued for as long as 5 yr for some boars. The percentage of ejaculates that were positive for the EGFP transgene ranged from 0% to 54.8% for recipients of AAV vector-transduced germ cells (n = 17) and from 0% to 25% for recipients of LV vector-transduced germ cells (n = 5). When semen from two AAV recipients was used for in vitro fertilization (IVF), 9.09% and 64.3% of embryos were transgenic. Semen collected from two LV-vector recipients produced 7.7% and 26.3% transgenic IVF embryos. Here, we not only demonstrated AAV-mediated GSC transduction in another large animal model (pigs) but also showed, to our knowledge for the first time, that LV-mediated GSC transduction resulted in transgene transmission in pigs.


Subject(s)
Germ Cells/transplantation , Green Fluorescent Proteins/metabolism , Swine/genetics , Transduction, Genetic/veterinary , Animals , Animals, Genetically Modified , Dependovirus , Gene Expression Regulation/physiology , Genetic Vectors , Germ Cells/metabolism , Green Fluorescent Proteins/genetics , Lentivirus , Male , Spermatozoa
3.
Mol Reprod Dev ; 77(4): 348-52, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20043318

ABSTRACT

Mammalian spermatogonial stem cells reside on the basement membrane of the seminiferous tubules. The mechanisms responsible for maintenance of spermatogonia at the basement membrane are unclear. Since acetylated alpha-tubulin (Ac-alpha-Tu) is a component of long-lived, stable microtubules and deacetylation of alpha-tubulin enhances cell motility, we hypothesized that acetylation of alpha-tubulin might be associated with positioning of spermatogonia at the basement membrane. The expression pattern of Ac-alpha-Tu at different stages of testis development was characterized by immunohistochemistry for Ac-alpha-Tu and spermatogonia-specific proteins (PGP 9.5, DAZL). In immature pig testes, Ac-alpha-Tu was present exclusively in gonocytes at 1 week of age, and in a subset of spermatogonia at 10 weeks of age. At this age, spermatogonia are migrating toward the tubule periphery and Ac-alpha-Tu appeared polarized toward the basement membrane. In adult pig testes, Ac-alpha-Tu was detected in few single or paired spermatogonia at the basement membrane as well as in spermatids and spermatozoa. Only undifferentiated (DAZL-), proliferating (determined by BrdU incorporation) spermatogonia expressed high levels of Ac-alpha-Tu. Comparison with the expression pattern of beta-tubulin and tyrosinated alpha-tubulin confirmed that only Ac-alpha-Tu is specific to germ cells. The unique pattern of Ac-alpha-Tu in undifferentiated germ cells during postnatal development suggests that posttranslational modifications of microtubules may play an important role in recruiting and anchoring spermatogonia at the basement membrane. Mol. Reprod. Dev. 77: 348-352, 2010. (c) 2009 Wiley-Liss, Inc.


Subject(s)
Spermatogonia , Stem Cells/metabolism , Sus scrofa , Tubulin/metabolism , Acetylation , Amino Acid Sequence , Animals , Male , Microtubules/metabolism , Molecular Sequence Data , Sequence Alignment , Spermatogonia/cytology , Spermatogonia/metabolism , Spermatogonia/physiology , Stem Cells/cytology , Sus scrofa/anatomy & histology , Sus scrofa/embryology , Tubulin/genetics , Ubiquitin Thiolesterase/metabolism
4.
J Cell Physiol ; 220(2): 460-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19388011

ABSTRACT

Asymmetric division of germline stem cells in vertebrates was proposed a century ago; however, direct evidence for asymmetric division of mammalian spermatogonial stem cells (SSCs) has been scarce. Here, we report that ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is expressed in type A (A(s), A(pr), and A(al)) spermatogonia located at the basement membrane (BM) of seminiferous tubules at high and low levels, but not in differentiated germ cells distant from the BM. Asymmetric segregation of UCH-L1 was associated with self-renewal versus differentiation divisions of SSCs as defined by co-localization of UCH-L1(high) and PLZF, a known determinant of undifferentiated SSCs, versus co-localization of UCH-L1(low/-) with proteins expressed during SSC differentiation (DAZL, DDX4, c-KIT). In vitro, gonocytes/spermatogonia frequently underwent asymmetric divisions characterized by unequal segregation of UCH-L1 and PLZF. Importantly, we could also demonstrate asymmetric segregation of UCH-L1 and PLZF in situ in seminiferous tubules. Expression level of UCH-L1 in the immature testis where spermatogenesis was not complete was not affected by the location of germ cells relative to the BM, whereas UCH-L1-positive spermatogonia were exclusively located at the BM in the adult testis. Asymmetric division of SSCs appeared to be affected by interaction with supporting somatic cells and extracelluar matrix. These findings for the first time provide direct evidence for existence of asymmetric division during SSCs self-renewal and differentiation in mammalian spermatogenesis.


Subject(s)
Cell Differentiation/physiology , Spermatogonia , Stem Cells/physiology , Ubiquitin Thiolesterase/metabolism , Age Factors , Animals , Biomarkers/metabolism , Cells, Cultured , DEAD-box RNA Helicases/metabolism , Extracellular Matrix/metabolism , Kruppel-Like Transcription Factors/metabolism , Male , Proto-Oncogene Proteins c-kit/metabolism , RNA-Binding Proteins/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism , Stem Cells/cytology , Swine , Testis/cytology , Ubiquitin Thiolesterase/genetics
5.
Endocrinology ; 149(10): 5288-96, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18566126

ABSTRACT

In juvenile monkeys, precocious puberty can be induced by administration of gonadotropins resulting in testicular somatic cell maturation and germ cell differentiation. It is, however, unknown whether testicular maturation can also be induced in younger monkeys. Here we used testis tissue xenografting to investigate whether infant monkey testis tissue will undergo somatic cell maturation and/or spermatogenesis in response to endogenous adult mouse gonadotropins or exogenous gonadotropins. Testicular tissue pieces from 3- and 6-month-old rhesus monkeys were grafted to immunodeficient, castrated mice. Recipient mice were either left untreated or treated with pregnant mare serum gonadotropin and/or human chorionic gonadotropin twice weekly and were killed 28 weeks after grafting. Testicular maturation in grafted tissue was assessed based on morphology and the most advanced germ cell type present and by immunohistochemistry for expression of proliferating cell nuclear antigen, Mullerian-inhibiting substance, and androgen receptor. Testis grafts, irrespective of donor age or treatment, contained fewer germ cells than donor tissue. Grafts from 6-month-old donors showed tubular expansion with increased seminiferous tubule diameter and lumen formation, whereas those harvested from gonadotropin-treated mice contained elongated spermatids. Grafts from 3-month-old donors recovered from gonadotropin-treated mice contained pachytene spermatocytes, whereas those recovered from untreated mice showed only slight tubular expansion. Immunohistochemistry revealed that exposure to exogenous gonadotropins supported Sertoli cell maturation, irrespective of donor age. These results indicate that sustained gonadotropin stimulation of immature (<12 months old) monkey testis supports Sertoli cell maturation, thereby terminating the unresponsive phase of the germinal epithelium and allowing complete spermatogenesis in testis tissue from infant rhesus monkeys.


Subject(s)
Graft Survival/physiology , Testis/growth & development , Testis/transplantation , Transplantation, Heterologous/methods , Animals , Anti-Mullerian Hormone/metabolism , Macaca mulatta , Male , Mice , Mice, Inbred ICR , Mice, SCID , Orchiectomy , Proliferating Cell Nuclear Antigen/metabolism , Receptors, Androgen/metabolism , Seminal Vesicles/cytology , Spermatogenesis/physiology , Testis/metabolism , Ubiquitin Thiolesterase/metabolism
6.
Reproduction ; 136(1): 85-93, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18390693

ABSTRACT

Recovery of germ cells could be an option for preservation of the genetic pool of endangered animals. In immature males, xenografting of testis tissue provides the opportunity to recover sperm from these animals. In adult animals, xenografting has been less successful, but de novo morphogenesis of functional testis tissue from dissociated testis cells could be an alternative. To assess the potential use of these techniques in endangered bovid species, the domestic sheep was used as a model. Testes from 2-week-old lambs were grafted as tissue fragments or cell suspensions into nude mice. Grafts were recovered at 4, 8, 12 and 16 weeks post grafting. For isolated cells, two additional time points at 35 and 40 weeks after grafting were added. In addition, to analyse the possible effect of social stress among mice within a group on the development of the grafts, testis tissue grafts were recovered 13 weeks post grafting from mice housed individually and in groups. Complete spermatogenesis occurred in sheep testis xenografts at 12 weeks, similar to the situation in situ. Isolated sheep testis cells were able to reorganize and form functional testicular tissue de novo. Housing mice individually or in groups did not have any effect on the development of xenografts. Xenografting of testis tissue might be useful to obtain sperm from immature endangered ungulates that die prematurely. Testis tissue de novo morphogenesis from isolated cells could open interesting options to recover germ cells from mature males with impaired spermatogenesis.


Subject(s)
Mice, Nude , Sheep, Domestic , Spermatozoa/transplantation , Testis/transplantation , Animals , Animals, Newborn , Extinction, Biological , Immunohistochemistry , Male , Mice , Models, Animal , Social Environment , Testis/growth & development , Transplantation, Heterologous
7.
FASEB J ; 22(2): 374-82, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17873102

ABSTRACT

We explored whether exposure of mammalian germ line stem cells to adeno-associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ cell-depleted syngeneic recipient testes, resulting in colonization of the recipient testes by transgenic donor cells. Mating of recipient males to wild-type females yielded 10% transgenic offspring. To broaden the approach to nonrodent species, AAV-transduced germ cells from goats were transplanted to recipient males in which endogenous germ cells had been depleted by fractionated testicular irradiation. Transgenic germ cells colonized recipient testes and produced transgenic sperm. When semen was used for in vitro fertilization (IVF), 10% of embryos were transgenic. Here, we report for the first time that AAV-mediated transduction of mammalian germ cells leads to transmission of the transgene through the male germ line. Equally important, this is also the first report of transgenesis via germ cell transplantation in a nonrodent species, a promising approach to generate transgenic large animal models for biomedical research.


Subject(s)
Dependovirus/genetics , Germ Cells/metabolism , Germ Cells/transplantation , Stem Cell Transplantation , Stem Cells/metabolism , Transduction, Genetic/methods , Transgenes/genetics , Animals , Cells, Cultured , Genetic Vectors/genetics , Goats , Male , Mice , Mice, Transgenic , Models, Animal , Seminiferous Tubules/metabolism
8.
Biol Reprod ; 76(1): 43-7, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17005941

ABSTRACT

During mammalian development, morphogenesis of the testis requires the coordinated interplay of somatic cells to form seminiferous cords in which the primitive germ cells reside. These cords are the precursor of the functional male gonad and as such form the basis of male fertility. Cell migration during mammalian organogenesis and formation of complex tissues, such as the testis, are difficult to study in situ. Herein, we report extensive rearrangement of cells to regenerate complete functional testis tissue after implantation of isolated neonatal porcine testis cells under the skin of immunodeficient mice. Somatic cells and germ cells reorganized into structures that have remarkable morphologic and physiologic similarity to normal testis tissue, forming the endocrine and spermatogenic compartment of the testis. This unique in vivo system provides an accessible model for the study of testicular morphogenesis that could be especially useful in nonrodent species.


Subject(s)
Organogenesis , Sus scrofa/growth & development , Testis/growth & development , Animals , Male , Mice , Models, Animal , Regeneration , Testis/cytology , Testis/transplantation , Transplantation, Heterologous
9.
Mol Reprod Dev ; 73(12): 1531-40, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16894537

ABSTRACT

Identification and isolation of spermatogonial stem cells (SSCs) are a prerequisite for culture, genetic manipulation, and/or transplantation research. In this study, we established that expression of PGP 9.5 is a spermatogonia-specific marker in porcine testes. The expression pattern of PGP 9.5 in spermatogonia was compared to cell type-specific protein (GATA-4 or PLZF) expression in seminiferous tubules at different ages, and expression levels of PGP 9.5, Vasa, and Oct-4 were compared in different cell fractions. Enrichment of spermatogonia from 2-week-old (2wo) and 10-week-old (10wo) boars by adhesion to laminin, differential plating, or velocity sedimentation followed by differential plating was assessed by identification of spermatogonia using expression of PGP 9.5 as a marker. Compared to the initial samples, spermatogonia were enriched twofold in laminin-selected cells (P < 0.05), and fivefold either in cells remaining in suspension (fraction I) or in cells slightly attached to the culture dish (fraction II) (P < 0.05) after differential plating. Cells in fraction II appeared to be superior for future experiments due to higher viability (>90%) than in fraction I ( approximately 50%). Velocity sedimentation plus differential plating achieved cell populations containing up to 70% spermatogonia with good viability (>80%). Enriched spermatogonia from 2wo and 10wo testes could be maintained in a simple culture medium without additional growth factors for at least 2 weeks and continued to express PGP 9.5. These data provide the basis for future studies aimed at refining conditions of germ cell culture and manipulation prior to germ cell transplantation in pigs.


Subject(s)
Cell Culture Techniques/methods , Spermatogonia/metabolism , Swine/metabolism , Testis/metabolism , Ubiquitin Thiolesterase/physiology , Animals , Biomarkers/metabolism , Cell Adhesion , Cell Proliferation , DEAD-box RNA Helicases/metabolism , Germ Cells/metabolism , Laminin/metabolism , Male , Octamer Transcription Factor-3/metabolism , Spermatogenesis/physiology , Ubiquitin Thiolesterase/metabolism , Zebrafish Proteins/metabolism
10.
Mol Reprod Dev ; 73(5): 638-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16450405

ABSTRACT

Porcine sperm are extremely sensitive to the damaging effects of cold shock. It has been shown that cholesterol-binding molecules, such as 2-hydroxypropyl-beta-cyclodextrin (HBCD), improve post-cooling porcine sperm viability when added to an egg yolk-based extender, but also enhance sperm capacitation in other species. The objective of this study was to determine the effects of HBCD and cholesterol 3-sulfate (ChS) on porcine sperm viability and capacitation following cold shock or incubation under conditions that support capacitation using a defined medium. We report here that porcine sperm incubated in medium containing both HBCD and ChS have significantly improved viability following cold shock (10 min at 10 degrees C) when compared to sperm incubated without HBCD or ChS, or with either component alone. Treatment with HBCD plus ChS also completely inhibited the increase in protein tyrosine phosphorylation induced by the cold shock treatment or by incubation for 3 hr under conditions that support capacitation. Two assays of sperm capacitation, the rate of calcium ionophore-induced acrosome reactions and chlortetracycline (CTC) staining, were not significantly altered by HBCD and ChS following cold shock. However, 3-hr incubation with HBCD plus ChS or with 1 mM ChS alone decreased the percentage of sperm undergoing the induced acrosome reaction without significantly affecting viability when compared to the control. These results indicate that the manipulation of sperm plasma membrane cholesterol content affects porcine sperm viability and capacitation status and could therefore be useful to protect sperm from cold shock during cryopreservation by improving viability without promoting premature capacitation.


Subject(s)
Cholesterol/pharmacology , Cryopreservation , Cryoprotective Agents/pharmacology , Excipients/pharmacology , Sperm Capacitation/drug effects , Spermatozoa/metabolism , beta-Cyclodextrins/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Cell Survival/drug effects , Male , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Spermatozoa/cytology , Swine
11.
Biol Reprod ; 69(4): 1260-4, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12801978

ABSTRACT

Transplantation of spermatogonial stem cells into syngeneic or immunosuppressed recipient mice or rats can result in donor-derived spermatogenesis and fertility. Recently, this approach has been employed to introduce a transgene into the male germline. Germ-cell transplantation in species other than laboratory rodents, if successful, holds great promise as an alternative to the inefficient methods currently available to generate transgenic farm animals that can produce therapeutic proteins in their milk or provide organs for transplantation to humans. To explore whether germ-cell transplantation could result in donor-derived spermatogenesis and fertility in immunocompetent recipient goats, testis cells were transplanted from transgenic donor goats carrying a human alpha-1 antitrypsin expression construct to the testes of sexually immature wild-type recipient goats. After puberty, sperm carrying the donor-derived transgene were detected in the ejaculates of two out of five recipients. Mating of one recipient resulted in 15 offspring, one of which was transgenic for the donor-derived transgene. This is the first report of donor cell-derived sperm production and transmission of the donor haplotype to the next generation after germ-cell transplantation in a nonrodent species. Furthermore, these results indicate that successful germ-cell transplantation is feasible between immunocompetent, unrelated animals. In the future, transplantation of genetically modified germ cells may provide a more efficient alternative for production of transgenic domestic animals.


Subject(s)
Animals, Genetically Modified/genetics , Cell Transplantation/methods , Fertility/genetics , Goats/genetics , Spermatozoa/transplantation , Animals , Animals, Genetically Modified/immunology , Female , Goats/immunology , Haplotypes , Humans , Immunocompetence , Male , Spermatogenesis/genetics , Spermatozoa/cytology , Spermatozoa/physiology , alpha 1-Antitrypsin/genetics
12.
Mol Reprod Dev ; 64(4): 422-8, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12589654

ABSTRACT

Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat. Isolated donor testis cells were infused into the seminiferous tubules of anesthetized recipient goats through an ultrasonographically-guided catheter inserted into the rete testis. Donor cells were obtained by enzymatic digestion of freshly collected testes from immature goats (either from the recipients' contralateral testis or from unrelated donors). Prior to transplantation, testis cells were labeled with a fluorescent marker to allow identification after transplantation. Recipient testes were examined for the presence and localization of labeled donor cells at 3-week intervals up to 12 weeks after transplantation. Labeled donor cells were found in the seminiferous tubules of all testes, comprising 10-35% of the examined tubules. Histological examination of the recipient testes did not reveal evident tissue damage, except for limited fibrotic changes at the site of needle insertion. Likewise there were no detectable local or systemic signs of immunologic reactions to the transplantations. These results indicate that germ cell transplantation is technically feasible in immature male goats and that donor-derived cells are retained in the recipient testis for at least three months and through puberty. This study represents the first report of germ cell transplantation in goats.


Subject(s)
Goats/physiology , Seminiferous Tubules/physiology , Spermatozoa/transplantation , Animals , Male , Staining and Labeling , Trypan Blue/metabolism
13.
Biol Reprod ; 66(1): 21-8, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11751259

ABSTRACT

Spermatogonial stem cells form the foundation of spermatogenesis, and their transplantation provides a unique opportunity to study spermatogenesis and may offer an alternative approach for animal transgenesis. This study was designed to extend the technique of spermatogonial transplantation to an economically important, large-animal model. Isolated immature pig testes were used to develop the intratesticular injection technique. Best results of intratubular germ cell transfer were obtained when a catheter was inserted into the rete testis under ultrasound guidance. The presence of infused dye or labeled cells was confirmed in the seminiferous tubules from 70 of 89 injected isolated testes. Infusion of 3-6 ml of dye solution or cell suspension could fill the rete and up to 50% of seminiferous tubules. The technique was subsequently applied in vivo. Donor cells included testis cells from 1- or 10-wk-old boars (from the recipients' contralateral testis or unrelated donors) and those from mice carrying a marker gene. Porcine testis cells were labeled with a fluorescent marker before transplantation. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Labeled porcine donor cells were found in numerous seminiferous tubules from 10 of 11 testes receiving pig cells. These results indicate that germ cell transplantation is feasible in immature pigs, and that porcine transplanted cells are retained in the recipient testis for at least 1 mo. This study represents a first step toward successful spermatogonial transplantation in a farm animal species.


Subject(s)
Germ Cells/transplantation , Testis/cytology , Alkylating Agents/pharmacology , Animals , Animals, Genetically Modified , Busulfan/pharmacology , Cell Separation , Female , Male , Mice , Rete Testis/cytology , Rete Testis/diagnostic imaging , Seminiferous Tubules/cytology , Swine , Testis/diagnostic imaging , Transplantation, Autologous , Transplantation, Heterologous , Transplantation, Homologous , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL