Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38344816

ABSTRACT

Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.Communicated by Ramaswamy H. Sarma.

2.
Plant Physiol Biochem ; 203: 108067, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37832369

ABSTRACT

Agronomic crops can benefit from the application of nanoscale materials in order to control phytopathogens and improve plant growth. Bipolaris sorokiniana, a soil- and seed-borne fungus, causes severe yield losses in wheat. In order to determine the physio-chemical changes in wheat under biotic stress of B. sorokiniana, the current study aimed to synthesis silver nanoparticles (AgNPs) using Allium sativum bulb extract. Herein, we applied the silver nanoparticles (AgNPs) as a foliar spray on two wheat varieties (Pakistan-2013, and NARC-2011) at the concentrations of 10, 20, 30, and 40 mg/L to suppress B. sorokiniana. Among all the applied concentrations of AgNPs, the 40 mg/L concentration demonstrated the most effective outcome in reduction of the intensity of spot blotch and improved the morphological, physiological, biochemical parameters, as well as antioxidant activity in wheat plant. Foliar application of AgNPs at 40 mg/L Pakistan-2013 and NARC-2011 wheat varieties significantly increased chlorophyll a 84.8% and 53.4%, chlorophyll b 28.9% and 84.3%, total chlorophyll content 294.3% and 241.2%, membrane stability index 7.5% and 6.1%, relative water contents 25.4% and 10.5%, proline content 320.5% and 609.9%, and soluble sugar content 120% and 259.4%, respectively, compared to control and diseased plant. This is the first study provides important insights into the role of phyto-mediated AgNPs in increasing resistant of wheat infected with B. sorokiniana. These findings offers valuable new insights that may be useful for reducing disease incidence in wheat fields.


Subject(s)
Ascomycota , Metal Nanoparticles , Triticum/physiology , Silver/pharmacology , Ascomycota/physiology , Chlorophyll A
3.
Plants (Basel) ; 12(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36840109

ABSTRACT

In the present study, SeNPs were synthesized using Melia azedarach leaf extracts and investigated for growth promotion in wheat under the biotic stress of spot blotch disease. The phytosynthesized SeNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The in vitro efficacy of different concentrations of phytosynthesized SeNPs (i.e., 100 µg/mL, 150 µg/mL, 200 µg/mL, 250 µg/mL, and 300 µg/mL) was evaluated using the well diffusion method, which reported that 300 µg/mL showed maximum fungus growth inhibition. For in vivo study, different concentrations (10, 20, 30, and 40 mg/L) of SeNPs were applied exogenously to evaluate the morphological, physiological, and biochemical parameters under control conditions and determine when infection was induced. Among all treatments, 30 mg/L of SeNPs performed well and increased the plant height by 2.34% compared to the control and 30.7% more than fungus-inoculated wheat. Similarly, fresh plant weight and dry weight increased by 17.35% and 13.43% over the control and 20.34% and 52.48% over the fungus-treated wheat, respectively. In leaf surface area and root length, our findings were 50.11% and 10.37% higher than the control and 40% and 71% higher than diseased wheat, respectively. Plant physiological parameters i.e., chlorophyll a, chlorophyll b, and total chlorophyll content, were increased 14, 133, and 16.1 times over the control and 157, 253, and 42 times over the pathogen-inoculated wheat, respectively. Our findings regarding carotenoid content, relative water content, and the membrane stability index were 29-, 49-, and 81-fold higher than the control and 187-, 63-, and 48-fold higher than the negative control, respectively. In the case of plant biochemical parameters, proline, sugar, flavonoids, and phenolic contents were recorded at 6, 287, 11, and 34 times higher than the control and 32, 107, 33, and 4 times more than fungus-inoculated wheat, respectively. This study is considered the first biocompatible approach to evaluate the potential of green-synthesized SeNPs as growth-promoting substances in wheat under the spot blotch stress and effective management strategy to inhibit fungal growth.

4.
PLoS One ; 18(2): e0274679, 2023.
Article in English | MEDLINE | ID: mdl-36749754

ABSTRACT

Plant extract-based green synthesis of nanoparticles is an emerging class of nanotechnology that has revolutionized the entire field of biological sciences. Green synthesized nanoparticles are used as super-growth promoters and antifungal agents. In this study, selenium nanoparticles (SeNPs) were synthesized using Melia azedarach leaves extract as the main reducing and stabilizing agent and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and fourier transform infrared spectrometer (FTIR). The green synthesized SeNPs were exogenously applied on Mangifera indica infected with mango malformation disease. The SeNPs at a concentration of 30 µg/mL were found to be the best concentration which enhanced the physiological (chlorophyll and membrane stability index), and biochemical (proline and soluble sugar) parameters. The antioxidant defense system was also explored, and it was reported that green synthesized SeNPs significantly reduced the biotic stress by enhancing enzymatic and non-enzymatic activities. In vitro antifungal activity of SeNPs reported that 300 µg/mL concentration inhibited the Fusarium mangiferae the most. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs to improve the health of mango malformation-infected plants and effective management strategy to inhibit the growth of F. mangifera.


Subject(s)
Mangifera , Metal Nanoparticles , Nanoparticles , Selenium , Antioxidants/pharmacology , Selenium/pharmacology , Antifungal Agents/pharmacology , Nanoparticles/chemistry , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Nat Prod Res ; 37(19): 3314-3322, 2023.
Article in English | MEDLINE | ID: mdl-35428423

ABSTRACT

Chickpea, Cicer arietinum L., is a nutrient rich crop that is widely cultivated and consumed in Pakistan. However, chickpea is highly prone to fungal growth leading to contamination with aflatoxins, the most potent carcinogen found in nature. In this study, fifty chickpea seed samples were collected from the local markets of the Punjab, Pakistan, to evaluate their nutritional quality, fungal and AFB1 contamination. Proximate analysis suggested that chickpea seeds contained 5.5-6.93% moisture, 62.24-63.24% carbohydrates, 22.75-23.44% protein, 4.99-5.4% fat, 5.62-5.84% fiber and 2.92-3.16% ash. Morphological identification techniques revealed fourteen fungal species belonging to six fungal genera from which Aspergillus flavus was the leading contaminant. AFB1 analysis revealed that sixty-two percent samples were contaminated with AFB1. All the AFB1 positive samples contained AFB1 level more than 2 ppb and 12.9% samples contain AFB1 level more than 20 ppb, exceeded the maximum limit (ML) assigned by EU and USA (FDA & FAO) respectively. The results of the present studies reported that chickpea is a highly contaminated commodity in terms of fungi and AFB1 that's why further investigations and monitoring are required to reduce the fungal and AFB1 contamination. These baseline data are an initial step in the effort to deal with this significant food safety issue.

6.
Molecules ; 27(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500240

ABSTRACT

In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.


Subject(s)
Basidiomycota , Nanoparticles , Selenium , Triticum , Selenium/pharmacology , Selenium/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
7.
Molecules ; 27(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956833

ABSTRACT

Agriculture is the backbone of every developing country. Among various crops, wheat (Triticum aestivum L.) belongs to the family Poaceae and is the most important staple food crop of various countries. Different biotic (viruses, bacteria and fungi) and abiotic stresses (water logging, drought and salinity) adversely affect the qualitative and quantitative attributes of wheat. Among these stresses, salinity stress is a very important limiting factor affecting the morphological, physiological, biochemical attributes and grain yield of wheat. This research work was carried out to evaluate the influence of phytosynthesized TiO2 NPs on the germination, physiochemical, and yield attributes of wheat varieties in response to salinity. TiO2 NPs were synthesized using TiO2 salt and a Buddleja asiatica plant extract as a reducing and capping agent. Various concentrations of TiO2 nanoparticles (20, 40, 60 and 80 mg/L) and salt solutions (NaCl) (100 and 150 mM) were used. A total of 20 mg/L and 40 mg/L improve germination attributes, osmotic and water potential, carotenoid, total phenolic, and flavonoid content, soluble sugar and proteins, proline and amino acid content, superoxide dismutase activity, and reduce malondialdhehyde (MDA) content at both levels of salinity. These two concentrations also improved the yield attributes of wheat varieties at both salinity levels. The best results were observed at 40 mg/L of TiO2 NPs at both salinity levels. However, the highest concentrations (60 and 80 mg/L) of TiO2 NPs showed negative effects on germination, physiochemical and yield characteristics and causes stress in both wheat varieties under control irrigation conditions and salinity stress. Therefore, in conclusion, the findings of this research are that the foliar application of TiO2 NPs can help to improve tolerance against salinity stress in plants.


Subject(s)
Nanoparticles , Triticum , Salinity , Salt Stress , Sodium Chloride/pharmacology , Titanium , Triticum/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...