Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 328: 118051, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38493905

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY: The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS: Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS: This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-ß-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION: In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.


Subject(s)
Methyl Ethers , Morinda , Rubiaceae , Humans , Mice , Animals , Morinda/chemistry , Rubiaceae/chemistry , Molecular Docking Simulation , Cyclooxygenase 2 , Quercetin/analysis , Plant Roots/chemistry , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/analysis , Glycosides/chemistry , Inflammation/drug therapy , Methyl Ethers/analysis , Phytochemicals/therapeutic use , Phytochemicals/toxicity
2.
Ecotoxicology ; 30(6): 1126-1137, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34085160

ABSTRACT

Neonicotinoids and heavy metals pollution exist simultaneously in agro ecosystem. However, little is known about their combined ecotoxicological effects on non-target crop plants. We have selected imidacloprid (IMI) and cadmium (Cd), applied alone and in combination, to evaluate their effect on growth, physiological and biochemical parameters of tomato. Results showed that the single application of contaminants (IMI and/or Cd) adversely affected both the growth and chlorophyll pigment, and Cd alone application was more phytotoxic than IMI. However, their combined action aggravated the inhibitory effect and indicate a synergistic effect, but it exerted antagonistic effects on chlorophyll pigment inhibition compared with IMI and Cd alone treatments. Both chemicals increased hydrogen peroxide level and generated lipid peroxidation, and the co-contamination exacerbates oxidative stress by their synergistic effect. Those results implicate that disturbance of cellular redox status is the plausible mechanism for IMI and Cd induced toxicity. In conclusion, the single or combined IMI and Cd cause negative effects on tomatoes.


Subject(s)
Solanum lycopersicum , Cadmium/toxicity , Ecosystem , Neonicotinoids/toxicity , Nitro Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...