Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(14): e34710, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148982

ABSTRACT

The increasing pressures of urban development and agricultural expansion have significant implications for land use and land cover (LULC) dynamics, particularly in ecologically sensitive regions like the Murree and Kotli Sattian tehsils of the Rawalpindi district in Pakistan. This study's primary objective is to assess spatial variations within each LULC category over three decades (1992-2023) using cross-tabulation in ArcGIS to identify changes in LULC and investigates into forest fragmentation analysis using the Landscape Fragmentation Tool (LFTv2.0) to classify forest into several classes such as patch, edge, perforated, small core, medium core, and large core. Utilizing remote sensing data from Landsat 5 and Landsat 9 satellites, the research focuses on the temporal dynamics in various land classes including Coniferous Forest (CF), Evergreen Forest (EF), Arable Land (AR), Buildup Area (BU), Barren Land (BA), Water (WA), and Grassland (GL). The Support Vector Machine (SVM) classifier and ArcGIS software were employed for image processing and classification, ensuring accuracy in categorizing different land types. Our results indicate a notable reduction in forested areas, with Coniferous Forest (CF) decreasing from 363.9 km2, constituting 45.0 % of the area in 1992, to 291.5 km2 (36.0 %) in 2023, representing a total decrease of 72.4 km2. Similarly, Evergreen Forests have also seen a significant reduction, from 177.9 km2 (22.0 %) in 1992 to 99.8 km2 (12.3 %) in 2023, a decrease of 78.1 km2. The study investigates into forest fragmentation analysis using the Landscape Fragmentation Tool (LFTv2.0), revealing an increase in fragmentation and a decrease in large core forests from 20.3 % of the total area in 1992 to 7.2 % in 2023. Additionally, the patch forest area increased from 2.4 % in 1992 to 5.9 % in 2023, indicating significant fragmentation. Transition matrices and a Sankey diagram illustrate the transitions between different LULC classes, providing a comprehensive view of the dynamics of land-use changes and their implications for ecosystem services. These findings highlight the critical need for robust conservation strategies and effective land management practices. The study contributes to the understanding of LULC dynamics and forest fragmentation in the Himalayan region of Pakistan, offering insights essential for future land management and policymaking in the face of rapid environmental changes.

2.
Sci Rep ; 14(1): 11775, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783048

ABSTRACT

This study assesses the relationships between vegetation dynamics and climatic variations in Pakistan from 2000 to 2023. Employing high-resolution Landsat data for Normalized Difference Vegetation Index (NDVI) assessments, integrated with climate variables from CHIRPS and ERA5 datasets, our approach leverages Google Earth Engine (GEE) for efficient processing. It combines statistical methodologies, including linear regression, Mann-Kendall trend tests, Sen's slope estimator, partial correlation, and cross wavelet transform analyses. The findings highlight significant spatial and temporal variations in NDVI, with an annual increase averaging 0.00197 per year (p < 0.0001). This positive trend is coupled with an increase in precipitation by 0.4801 mm/year (p = 0.0016). In contrast, our analysis recorded a slight decrease in temperature (- 0.01011 °C/year, p < 0.05) and a reduction in solar radiation (- 0.27526 W/m2/year, p < 0.05). Notably, cross-wavelet transform analysis underscored significant coherence between NDVI and climatic factors, revealing periods of synchronized fluctuations and distinct lagged relationships. This analysis particularly highlighted precipitation as a primary driver of vegetation growth, illustrating its crucial impact across various Pakistani regions. Moreover, the analysis revealed distinct seasonal patterns, indicating that vegetation health is most responsive during the monsoon season, correlating strongly with peaks in seasonal precipitation. Our investigation has revealed Pakistan's complex association between vegetation health and climatic factors, which varies across different regions. Through cross-wavelet analysis, we have identified distinct coherence and phase relationships that highlight the critical influence of climatic drivers on vegetation patterns. These insights are crucial for developing regional climate adaptation strategies and informing sustainable agricultural and environmental management practices in the face of ongoing climatic changes.


Subject(s)
Climate , Seasons , Pakistan , Plant Development , Plants , Climate Change , Temperature , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL