Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 11: 1213383, 2023.
Article in English | MEDLINE | ID: mdl-37645250

ABSTRACT

The development of inflammatory bowel diseases (IBD) involves the breakdown of two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The destabilization of each barrier can promote initiation and progression of the disease. Interestingly, first evidence is available that both barriers are communicating through secreted factors that may accordingly serve as targets for therapeutic modulation of barrier functions. Interferon (IFN)-γ is among the major pathogenesis factors in IBD and can severely impair both barriers. In order to identify factors transmitting signals from the GVB to the epithelial cell barrier, we analyzed the secretome of IFN-γ-treated human intestinal endothelial cells (HIEC). To this goal, HIEC were isolated in high purity from normal colon tissues. HIEC were either untreated or stimulated with IFN-γ (10 U/mL). After 48 h, conditioned media (CM) were harvested and subjected to comparative hyper reaction monitoring mass spectrometry (HRM™ MS). In total, 1,084 human proteins were detected in the HIEC-CM. Among these, 43 proteins were present in significantly different concentrations between the CM of IFN-γ- and control-stimulated HIEC. Several of these proteins were also differentially expressed in various murine colitis models as compared to healthy animals supporting the relevance of these proteins secreted by inflammatory activated HIEC in the inter-barrier communication in IBD. The angiocrine pathogenic impact of these differentially secreted HIEC proteins on the epithelial cell barrier and their perspectives as targets to treat IBD by modulation of trans-barrier communication is discussed in detail.

2.
Mol Syst Biol ; 19(4): e11024, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36896621

ABSTRACT

While several computational methods have been developed to predict the functional relevance of phosphorylation sites, experimental analysis of the interdependency between protein phosphorylation and Protein-Protein Interactions (PPIs) remains challenging. Here, we describe an experimental strategy to establish interdependencies between protein phosphorylation and complex formation. This strategy is based on three main steps: (i) systematically charting the phosphorylation landscape of a target protein; (ii) assigning distinct proteoforms of the target protein to different protein complexes by native complex separation (AP-BNPAGE) and protein correlation profiling; and (iii) analyzing proteoforms and complexes in cells lacking regulators of the target protein. We applied this strategy to YAP1, a transcriptional co-activator for the control of organ size and tissue homeostasis that is highly phosphorylated and among the most connected proteins in human cells. We identified multiple YAP1 phosphosites associated with distinct complexes and inferred how both are controlled by Hippo pathway members. We detected a PTPN14/LATS1/YAP1 complex and suggest a model how PTPN14 inhibits YAP1 via augmenting WW domain-dependent complex formation and phosphorylation by LATS1/2.


Subject(s)
Adaptor Proteins, Signal Transducing , Signal Transduction , Humans , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , YAP-Signaling Proteins , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
3.
Proc Natl Acad Sci U S A ; 119(40): e2117175119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36179048

ABSTRACT

Protein-protein interactions (PPIs) represent the main mode of the proteome organization in the cell. In the last decade, several large-scale representations of PPI networks have captured generic aspects of the functional organization of network components but mostly lack the context of cellular states. However, the generation of context-dependent PPI networks is essential for structural and systems-level modeling of biological processes-a goal that remains an unsolved challenge. Here we describe an experimental/computational strategy to achieve a modeling of PPIs that considers contextual information. This strategy defines the composition, stoichiometry, temporal organization, and cellular requirements for the formation of target assemblies. We used this approach to generate an integrated model of the formation principles and architecture of a large signalosome, the TNF-receptor signaling complex (TNF-RSC). Overall, we show that the integration of systems- and structure-level information provides a generic, largely unexplored link between the modular proteome and cellular function.


Subject(s)
Biological Phenomena , Proteomics , Protein Interaction Mapping , Protein Interaction Maps/physiology , Proteome/metabolism
4.
Nat Commun ; 11(1): 3563, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678104

ABSTRACT

Rapidly increasing availability of genomic data and ensuing identification of disease associated mutations allows for an unbiased insight into genetic drivers of disease development. However, determination of molecular mechanisms by which individual genomic changes affect biochemical processes remains a major challenge. Here, we develop a multilayered proteomic workflow to explore how genetic lesions modulate the proteome and are translated into molecular phenotypes. Using this workflow we determine how expression of a panel of disease-associated mutations in the Dyrk2 protein kinase alter the composition, topology and activity of this kinase complex as well as the phosphoproteomic state of the cell. The data show that altered protein-protein interactions caused by the mutations are associated with topological changes and affected phosphorylation of known cancer driver proteins, thus linking Dyrk2 mutations with cancer-related biochemical processes. Overall, we discover multiple mutation-specific functionally relevant changes, thus highlighting the extensive plasticity of molecular responses to genetic lesions.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , Protein Kinases/genetics , Proteomics/methods , Cell Line , Humans , Mass Spectrometry , Multiprotein Complexes , Mutation , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Phenotype , Phosphoproteins/metabolism , Phosphorylation , Protein Conformation , Protein Interaction Maps , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proteome/metabolism , Dyrk Kinases
5.
Mol Cell ; 79(3): 504-520.e9, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32707033

ABSTRACT

Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.


Subject(s)
Gene Regulatory Networks , Genetic Diseases, Inborn/genetics , Neoplasms/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Computational Biology/methods , Datasets as Topic , Gene Expression Regulation , Gene Ontology , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/pathology , Humans , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Muscular Dystrophies/enzymology , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Neoplasms/enzymology , Neoplasms/pathology , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Interaction Mapping/methods , Protein Kinases/chemistry , Protein Kinases/classification , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Signal Transduction
6.
Proteomics ; 19(13): e1800438, 2019 07.
Article in English | MEDLINE | ID: mdl-30901150

ABSTRACT

CRISPR-Cas gene editing holds substantial promise in many biomedical disciplines and basic research. Due to the important functional implications of non-histone chromosomal protein HMG-14 (HMGN1) in regulating chromatin structure and tumor immunity, gene knockout of HMGN1 is performed by CRISPR in cancer cells and the following proteomic regulation events are studied. In particular, DIA mass spectrometry (DIA-MS) is utilized, and more than 6200 proteins (protein- FDR 1%) and more than 82 000 peptide precursors are reproducibly measured in the single MS shots of 2 h. HMGN1 protein deletion is confidently verified by DIA-MS in all of the clone- and dish- replicates following CRISPR. Statistical analysis reveals 147 proteins change their expressions significantly after HMGN1 knockout. Functional annotation and enrichment analysis indicate the deletion of HMGN1 induces histone inactivation, various stress pathways, remodeling of extracellular proteomes, cell proliferation, as well as immune regulation processes such as complement and coagulation cascade and interferon alpha/ gamma response in cancer cells. These results shed new lights on the cellular functions of HMGN1. It is suggested that DIA-MS can be reliably used as a rapid, robust, and cost-effective proteomic-screening tool to assess the outcome of the CRISPR experiments.


Subject(s)
Gene Deletion , Gene Editing/methods , HMGN1 Protein/genetics , Proteomics/methods , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/physiology , HeLa Cells , Humans
7.
Nat Biotechnol ; 37(3): 314-322, 2019 03.
Article in English | MEDLINE | ID: mdl-30778230

ABSTRACT

Reproducibility in research can be compromised by both biological and technical variation, but most of the focus is on removing the latter. Here we investigate the effects of biological variation in HeLa cell lines using a systems-wide approach. We determine the degree of molecular and phenotypic variability across 14 stock HeLa samples from 13 international laboratories. We cultured cells in uniform conditions and profiled genome-wide copy numbers, mRNAs, proteins and protein turnover rates in each cell line. We discovered substantial heterogeneity between HeLa variants, especially between lines of the CCL2 and Kyoto varieties, and observed progressive divergence within a specific cell line over 50 successive passages. Genomic variability has a complex, nonlinear effect on transcriptome, proteome and protein turnover profiles, and proteotype patterns explain the varying phenotypic response of different cell lines to Salmonella infection. These findings have implications for the interpretation and reproducibility of research results obtained from human cultured cells.


Subject(s)
DNA Copy Number Variations/genetics , Genome, Human/genetics , HeLa Cells , Transcriptome/genetics , Genomics/standards , Humans , Proteome/genetics , Reproducibility of Results
8.
Mol Biol Cell ; 26(2): 185-94, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25428985

ABSTRACT

Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Membrane Glycoproteins/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Endoplasmic Reticulum/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Immunoblotting , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Folding , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Unfolded Protein Response
9.
Nat Cell Biol ; 16(1): 77-86, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24292014

ABSTRACT

Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD ligase) and degraded by cytosolic 26S proteasomes. The movement of these proteins through the lipid bilayer is assumed to occur via a protein-conducting channel of unknown nature. We show that the integral membrane protein Der1 oligomerizes, which relies on its interaction with the scaffolding protein Usa1. Mutations in the transmembrane domains of Der1 block the passage of soluble proteins across the ER membrane. As determined by site-specific photocrosslinking, the ER-luminal exposed parts of Der1 are in spatial proximity to the substrate receptor Hrd3, whereas the membrane-embedded domains reside adjacent to the ubiquitin ligase Hrd1. Intriguingly, both regions also form crosslinks to client proteins. Our data imply that Der1 initiates the export of aberrant polypeptides from the ER lumen by threading such molecules into the ER membrane and routing them to Hrd1 for ubiquitylation.


Subject(s)
Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Protein Folding , Saccharomyces cerevisiae Proteins/metabolism , Benzophenones/metabolism , Conserved Sequence/genetics , Cross-Linking Reagents/metabolism , Endoplasmic Reticulum-Associated Degradation , Membrane Proteins/chemistry , Models, Biological , Mutation/genetics , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism , Protein Multimerization , Protein Structure, Tertiary , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry , Substrate Specificity
10.
Biochim Biophys Acta ; 1808(3): 925-36, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20599420

ABSTRACT

Protein folding within the endoplasmic reticulum (ER) of eukaryotic cells is erroneous and often results in the formation of terminally malfolded species. A quality control system retards such molecules in the ER and eventually initiates their dislocation into the cytosol for proteolysis by 26S proteasomes. This process is termed ER associated protein degradation (ERAD). The spatial separation of ER based quality control and cytosolic proteolysis poses the need for a machinery that promotes the extraction of substrates from the ER. Due to the heterogeneous nature of the client proteins this transport system displays several unique features. Selective recognition of ERAD substrates does not involve transferable transport signals in the primary sequence and thus must follow other principles than established for proteins designated for the import into organelles. Moreover, an ER dislocation system must be capable to ship polypeptides, which may be at least partly folded and are in most cases covalently modified with bulky and hydrophilic glycans, through a membrane without disrupting the integrity of the ER. In this review we present current ideas on the highly dynamic and flexible nature of the dislocation apparatus and speculate on the mechanism that removes aberrant polypeptides from the ER in the course of ERAD. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Subject(s)
Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Animals , Humans , Protein Transport
11.
Bioessays ; 32(10): 905-13, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20806269

ABSTRACT

In eukaryotic cells terminally misfolded proteins of the secretory pathway are retarded in the endoplasmic reticulum (ER) and subsequently degraded in a ubiquitin-proteasome-dependent manner. This highly conserved process termed ER-associated protein degradation (ERAD) ensures homeostasis in the secretory pathway by disposing faulty polypeptides and preventing their deleterious accumulation and eventual aggregation in the cell. The focus of this paper is the functional description of membrane-bound ubiquitin ligases, which are involved in all critical steps of ERAD. In the end we want to speculate on how the modular architecture of these entities ensures the specificity of substrate selection and possibly accomplishes the transport of misfolded polypeptides from the ER into the cytoplasm.


Subject(s)
Endoplasmic Reticulum/metabolism , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Folding , Protein Processing, Post-Translational , Quality Control , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...